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Abstract

Many sources of information relevant to computer vision
and machine learning tasks are often underused. One ex-
ample is the similarity between the elements from a novel
source, such as a speaker, writer, or printed font. By com-
paring instances emitted by a source, we help ensure that
similar instances are given the same label. Previous ap-
proaches have clustered instances prior to recognition. We
propose a probabilistic framework that unifies similarity
with prior identity and contextual information. By fusing
information sources in a single model, we eliminate unre-
coverable errors that result from processing the informa-
tion in separate stages and improve overall accuracy. The
framework also naturally integrates dissimilarity informa-
tion, which has previously been ignored. We demonstrate
with an application in printed character recognition from
images of signs in natural scenes.

1. Introduction

To appear in Andrew Fitzgibbon, Yann LeCun, and Camillo J. Taylor, editors, IEEE Conference on Computer Vision
and Pattern Recognition, New York, June 2006.

The problem of character recognition in document anal-
ysis has a long history and is one of the most successful
applications of computer vision, image processing, and ma-
chine learning techniques. However, faced with complica-
tions such as noisy input, novel fonts, and unconstrained
text in natural images, the performance of traditional OCR
systems degrades more rapidly than humans’ ability to read
the same text. A possible reason for this could be that peo-
ple are able to apply many more sources of information to
the problem than current automated techniques. This is not
unique to character recognition, of course; using more in-
formation sources in our approaches to many computer vi-
sion problems should improve our results. In this work, we
integrate appearance similarity, one underused source of in-
formation, in a unified probabilistic framework to reduce
false matches by a factor of four and improve overall accu-
racy.

Progress has been made recently in the task of auto-
matically detecting and reading relatively small amounts of
printed text (e.g., signs) from natural images [5, 6] as an
aid to the visually impaired or travellers in need of transla-
tion. While the fundamental task of character recognition
is the same as in traditional document analysis, there are
some important differences that can drastically affect per-
formance. Perspective projection from non-uniform imag-
ing conditions can alter the appearance of characters requir-
ing rectification before recognition [5]. Signs are also typi-
cally printed in a wider variety of fonts than average docu-
ments, due to glyph alterations and custom designs. Finally,
the number of characters in a given sign is relatively small,
while the amount of text in a document can be quite large.

Recent advances in OCR performance have exploited the
length of documents. Hong and Hull [11] cluster word im-
ages and then label the clusters. Similarly, Breuel learns a
probability of whether two images contain the same char-
acter and uses the probability to cluster individual charac-
ters [2], with subsequent cluster labeling (i.e., by voting)
and nearest neighbor (most similar) classification [3]. These
methods capitalize on the idea of similarity; that characters
and words of similar appearance should be given the same
label. However, they suffer from the drawback that there
is no feedback between the labeling and clustering process.
Hobby and Ho [10] ameliorate this somewhat by purging
outliers from a cluster and matching them to other clusters
where possible. These processes all solve the clustering and
recognition problems in separate stages, making it impossi-
ble to recover from errors in the clustering stage.

Thus far, the dissimilarity between character images has
not been used as evidence against giving them the same
label, but in many circumstances this is a reasonable ap-
proach. (If there are multiple fonts present, then the font
identity may also be considered part of the label.) The pre-
vious clustering-based methods only ensure that all cluster
members are given the same label; they do not prevent dif-
ferent clusters from being assigned the same label.

Consider the example in Figure 1. The top row of text is
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Figure 1. A query image (left) is interpreted with varying amounts
of image (IG) and linguistic (IB , IC ) information. Only with sim-
ilarity information (IS) is the other contextual information con-
strained to global consistency.

the result of reading the sign on the left using only basic in-
formation about character images, and the lowercase l (ell)
is mistaken for an uppercase I (eye). The next two results
each combine the image information with some basic lan-
guage information. These do not correct the error but in fact
introduce new errors. Combining these three information
sources in the fourth line elicits both new errors. The image
and language information is based on local context and does
not require any global consistency. By adding similarity in-
formation in the last line, the errors are corrected; the two
e characters that appear the same are given the same label,
while the l and t characters of dissimilar appearance are
given different labels.

Our recognition strategy improves on two issues lacking
in previous approaches. First, by simultaneously incorpo-
rating character identity and similarity information into a
unified probabilistic model, we eliminate the need for dis-
tinct clustering/recognition steps and the potential for unre-
coverable errors. Second, we treat similarity and dissimilar-
ity as two sides of the same coin, which prevents dissimilar
characters from being given the same label. The rest of the
paper presents our probabilistic framework, including avail-
able information and related features, followed by a set of
experiments on reading text in images of real signs. We
then discuss the results and conclude that a unified method
including similarity information significantly improves ac-
curacy and reduces false matches by fourfold.

2. Probabilistic Framework for Recognition

Graphical models of probability are a powerful tool for
describing and modeling the logical dependence of various
information sources and unknowns in a Bayesian frame-
work. We employ a discriminative undirected graphical
model [13] for predicting character identities.

Let x be an input image representation and y the string
of characters contained in the image, taken from an alphabet
A. Letting I represent our information about the problem,
including any assumptions that give rise to the choice of a
particular probability, we frame the task of reading text in
images as an inference problem—using I and some training

data D—over a model or parameter space Θ:

p (y | x,D, I) =

∫

Θ

p (y | x,θ, I) p (θ | D, I) dθ. (1)

Note we have assumed that (i) given a prediction model θ,
the training data D do not reveal anything additional about
y, and (ii) given the training data D, an additional image x

does not give any information about the prediction model θ.
Of course, evaluating such an integral is non-trivial, so we
take the standard approach of finding the most likely model

θ̂ = arg max
θ∈Θ

p (θ | D, I) (2)

and using the point approximation

p (θ | D, I) = δ
(
θ − θ̂

)
(3)

so that the integral (1) becomes

p (y | x,D, I) ≈ p
(
y | x, θ̂, I

)
. (4)

The probability p (y | x,θ, I) is the typical undirected
graphical model: the unknown characters y are indexed by
the nodes of a graph, and an edge indicates logical depen-
dence between two nodes. Such a model may be written

p (y | x,θ, I) = exp {−U (y,x;θ) − log Z (x;θ)} , (5)

where U (y,x;θ) is an energy function for observations and
predictions parameterized by θ. The normalizing value

Z (x;θ) =
∑

y

exp {−U (y,x;θ)} (6)

ensures that (5) is a proper probability. Considering up to
pairwise dependencies, the energy is decomposed into local
and pairwise terms

U (y,x;θ) = UL (y,x;θ) + UP (y,x;θ) (7)

UL (y,x;θ) =
∑

i

Ui (yi,x;θ) (8)

UP (y,x;θ) =
∑

(i,j)

Uij (yi, yj ;θ) +

∑

(i,j)

Uij (yi, yj ,x;θ) (9)

where UL is a sum of local energies for a character and
given image, and UP is a sum of pairwise energies for two
character labels, which may or may not also depend on the
image. Incorporating the pairwise, image-dependent terms
will allow for image similarity comparisons when predict-
ing labels.

The factor graph [12] of the final model incorporating
all the information, which corresponds to the probability
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Figure 2. Factor graph for inferring characters y from a given im-
age x. The solid (black) factors capture relationships between
the image and character identity. Hatched (blue) factors between
neighboring y capture language information including bigrams
and letter case. Shaded (red) factors among y account for simi-
larities between characters in x for jointly labeling the string.

(5), is shown in Figure 2. Each term of the total energy
(7) belongs to one factor. Factor graphs are similar to the
usual graphical model representation, but the actual clique
parameterization is represented. For instance, the equiva-
lent graphical model for our probability is fully connected
among the yi, which would allow a single energy term to
depend on all of y. The factor graph illustrates that only
pairwise terms are being used. See Kschischang et al. [12]
for further background on the factor graph representation of
probability models.

Given data D =
{
y(k),x(k)

}
k

consisting of a sequence
of labeled observations, the optimization (2) is the usual
maximum a posteriori (MAP) estimation with some param-
eter prior p (θ | I) [13]. Using Bayes’ rule, the parameter
posterior is

p (θ | D, I) ∝ p (θ | I)
∏

k

p
(
y(k) | x(k),θ, I

)
(10)

where the product terms have the same model form (5). Af-
ter taking logarithms, the objective function is given by

L (θ;D) =
∑

k

[
−U

(
y(k),x(k);θ

)
(11)

− log Z
(
x(k);θ

)]
+ log p (θ | I) .

When U is linear in θ, the objective (11) is convex (assum-
ing the parameter prior is convex), so θ̂ can be found by
convex optimization. The inference task for the model (5)
will involve calculating the normalizing partition function
(6), marginal probabilities for the yi, or the y of maximum
posterior probability. While inference is efficient when the
corresponding factor graph is cycle-free, it is intractable in
general. When the factor graph has cycles, we must resort
to approximate inference techniques for calculating log Z

Figure 3. An example training character with (left to right) real,
imaginary, and complex modulus filter responses for one orienta-
tion and scale.

and the gradient of the objective L, in which case the opti-
mization of (11) is only approximate.

The information we apply to this task consists broadly of
two types: visual and linguistic. Previous work has shown
text detection can be done fairly reliably [6, 18], effectively
performing affine rectification and giving character bound-
ing boxes [5]. In this work, we take the locations of charac-
ters as a given with the image, letting xi denote the features
of an image patch relevant to the ith character yi. For now,
we assume that each observation x, (representing one local
region of text) contains a single font. Our model’s parame-
ters θ = (w,b, l, s) are partitioned by the information they
incorporate, and we estimate each subset independently. Al-
though they are not independent in general, our results show
this to be an acceptable approximation. Next, we describe
the information and features used in our model.

2.1. Character Image Features

Gabor filters are an effective and widely used tool for
feature extraction that decompose geometry into local ori-
entation and scale [7]. Their success in handwriting recog-
nition [8] and printed character recognition [5] demon-
strates their utility for this task. Using a minimally re-
dundant design strategy [14], a bank of 18 filters spanning
three scales (5, 10, and 20 pixels/cycle) and six orienta-
tions (30◦ increments from 0◦ to 150◦) is applied to the
grayscale image, yielding complex coefficients that contain
phase information (the real and imaginary parts of the filter
are even and odd functions, respectively). Taking the com-
plex modulus of the filter outputs provides phase invariance
and makes the responses less sensitive to translations of the
input; see Figure 3. Henceforth, let x denote a vector of
these Gabor filter responses to the original input image, with
|x| the vector of component-wise complex moduli of the re-
sponses. Similarly, the entries of x corresponding to the ith
character are given by the vector xi, with moduli |xi|.

Let us assume that there is a relationship between the
identity of the character and the filter responses, which sig-
nify local scale and orientation; this information is denoted
IG for the Gabor decomposition. We then associate charac-
ter classes with these filtered images by a linear energy

UG
i (yi,x;w) = w (yi)

> |xi| , (12)

where w (c) is a real-valued vector of weights for a particu-
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lar character c. The weights w = (w (c))c are optimized as
described earlier by maximizing p (w | D, IG) for w, where
D is a sequence of image/character pairs that are indepen-
dent given the model w. We use a Laplacian prior [9, 17]

p (w | α, IG) ∝ exp {−α ‖w‖1} , (13)

where ‖w‖1 is the `1 vector norm; α is chosen by valida-
tion. Experimental details may be found in Section 3.2.

2.2. Language Features

Properties of the language are strong cues for recogniz-
ing characters in previously unseen fonts and under adverse
conditions. We add these to the model in the form of two
information sources: character bigrams and letter case.

It is well known that the English lexicon employs certain
character juxtapositions more often than others. N-grams
are a widely-used general feature for character and hand-
writing recognition [1]. Our model uses this information
IB via the linear features

UB
ij (yi, yj ;b) = b (yi, yj) (14)

where i and j are ordered, adjacent characters, and b =
(b (c, c′))c,c′ are real-valued weights for each bigram cc′.
We do not consider letter case to be important in bigrams,
so the weights in b are tied across case (i.e., b (R, A) =
b (r, A) = b (R, a) = b (r, a)). These weights are also op-
timized independently by maximizing p (b | T , IB) for b,
where T is a corpus of English text. We use a uniform prior
p (b | IB) ∝ 1.

Prior knowledge of letter case with respect to words also
proves important for accurate recognition. In some fonts
potentially confusable characters may have different cases
(e.g., l and I, lowercase ell and capital eye). Since we do
not binarize the images, there is no direct method for mea-
suring the relative size of neighboring characters. We can
improve recognition accuracy in context because English
rarely switches case in the middle of the word. Addition-
ally, uppercase to lowercase transitions are common at the
beginning of words, but the reverse is not. (Note that digit
characters have no case.) This information IC is incorpo-
rated with the feature weights

UC
ij (yi, yj ; l) =





ls yi, yj same case
ld yi, yj different case
0 otherwise

(15)

when i and j are adjacent characters within a word and

UC
ij (yi, yj ; l) =

{
lu yi lowercase, yj uppercase
0 otherwise

(16)
when i and j are the first and second characters of a word,
respectively. We set the parameters l =

[
ls ld lu

]>
by maximizing p (l | T , IC) with the same corpus used for
the bigram features. A uniform prior is also used for l.
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Figure 4. Similarity basis functions and the learned energy for the
distance between different images of the same character; the co-
efficients are s =

[
0.9728 9.3191 6.9280

]
. The dotted

line in the right-hand figure shows the crossover from reward to
penalty, which occurs at an angle of about 37

◦.

2.3. Similarity

An important, underused source of information for
recognition is the similarity among the character images
themselves—two character images that look the same
should rarely be given different labels. Toward this end,
we need a comparison function for images. We have found
the vector angle between the concatenated real and imagi-
nary parts of filtered image vectors xi and xj to be a robust
indicator of image discrepancies. Letting θ be the angle be-
tween two such vectors, we use d = 1 − cos θ as a distance
measure, which has range [0, 2]. When the distance is small
the characters are very similar, but when large they are dis-
similar. Using this information IS we add the features

US
ij (yi, yj ,x; s) = δ (yi, yj) s

>dij (17)

where δ (c, c′) is the Kronecker delta, and

dij =
[

ln (dij) − ln (2 − dij) 1
]>

(18)

is a vector of basis functions that transform the distance dij

between two character images xi and xj . The first two func-
tions each have a distance range boundary as an asymptote,
and the last is a bias term. Thus, the first weight in s es-
tablishes a low energy reward for small distances, the sec-
ond weight a high energy penalty for larger distances, and
the bias helps (in conjunction with the first two) establish
the crossover point. This is similar to the inverse of the sig-
moid function with a scaled range, except that it is no longer
symmetric about the zero-crossing; see Figure 4. These
weights are again optimized independently by maximizing
p (s | S, IS), where S contains paired character images that
are the same up to small affine transformations and noise,
as well as pairs of different character images. See Section
3.1 for more details. We also use a uniform prior for s.

Since all previous features were either local to characters
or formed a chain along the text, inference in models includ-
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ing IG, IB , or IC is fast and exact via the sum-product al-
gorithm (belief propagation) [12]. However, by introducing
IS we are now making pairwise comparisons between all
characters of the query x. Inference in such a cyclic graph
becomes intractable and will require approximate solutions.
We use a loopy sum-product approximation and encounter
few problems with convergence.

3. Experiments

In this section we describe the results of recognizing text
in images of real signs and provide details on the data and
procedure used to train our model. Our alphabet of charac-
ters A consists of 26 lowercase, 26 uppercase, and the 10
digit characters (62 total).

3.1. Data Sets

We generated images of each character in 1,000 commer-
cially available fonts using GIMP.1 Each image is 128×128
pixels with the font height at 100 pixels; the bounding box
of the character is centered in the window.

A corpus of English text was acquired from Project
Gutenberg2—84 books including novels, non-fiction, and
reference for a total of more than 11 million words and 49
million characters (from our 62 character alphabet).

For learning the similarity function (17), we generated
pairs of the same character (in the same font) and pairs of
different characters (also in the same font) with the follow-
ing procedure. First, we select a font and a character uni-
formly at random. To produce a similar character, we gen-
erate a random linear transformation

T =

[
cos θ sin θ

− sin θ cos θ

] [
σx ρx

ρy σy

]
(19)

with rotation θ ∼ N (0, 1◦), scale factors σx, σy ∼
N (1, 0.01), and skew factors ρx, ρy ∼ N (0, 0.005). This
transformation is applied to the original image, followed
by additive noise. To produce a dissimilar pair, a different
character is chosen uniformly at random. We choose differ-
ent characters from the same font because these are likely
to be more similar than different characters from different
fonts, allowing for a better threshold to be learned. Addi-
tive Gaussian noise ε ∼ N (0, 0.01) is added to the original
and transformed images prior to Gabor filtering. For opti-
mal predictive discrimination, the ratio of same to different
pairs in the training data should be the ratio we expect in
testing data. Toward this end, we sample small windows of
text from our corpus. The window length is sampled from
a geometric distribution with a mean of 10 characters and
length at least 3; these parameters are chosen based on our
prior expectation of sign contents. In 10,000 samples, the

1GNU Image Manipulation Program http://www.gimp.org.
2http://www.gutenberg.org

same/different ratio is consistently about 0.057. This ratio
controls the relative number of similar and dissimilar pairs
we generated (100,000 total).

Our evaluation data comes from pictures of signs cap-
tured around a downtown North American city. There are
95 text regions (areas with the same font) and a total of
1,209 characters. Many signs have regular fonts (that is,
characters appear the same in all instances) that are straight-
forward, such as basic sans serif, and should be easily rec-
ognized. Other signs contain regular fonts that are custom
or rarely seen in the course of typical document recogni-
tion. Finally, there are a few signs with custom irregu-
lar fonts that pose the greatest challenge to the premise
that similarity information is useful. The signs are imaged
without extreme perspective distortion—they are roughly
fronto-parallel. If this were not the case, affine rectifica-
tion methods could be applied to the image [5]. Examples
from the data can be seen in the sections that follow.

Since the focus of this work is recognition, we have an-
notated our evaluation data with the bounding boxes for
characters. The character height is normalized and only fil-
ter responses from within the bounding box are considered
when calculating the energies for character identity UG and
similarity US . Previous research has focused on doing this
automatically, both in the context of signs [5] and OCR [4].
Note that Gabor filters are applied to the actual grayscale
image; no binarization is performed.

3.2. Training Details

As mentioned previously, the ideal prediction is a re-
sult of integrating for a Bayesian posterior. Although re-
cent advances have been made in approximation of the in-
tegral [15], the standard approach of using the mode of the
model posterior (2) for prediction, rather than a weighted
average of models, proves to give reasonable results in our
experiments.

To avoid the need for performing inference on several
chains with interdependent features during training, we use
the piecewise method of Sutton and McCallum [16]. The
training data is broken into graphs that have disjoint energy
functions, and the parameters θ = (w,b, l, s) are subse-
quently optimized. This is especially advantageous for the
bigram and case switch models (14), (15), and (16), which
do not depend on an observed image. Thus, training in-
stances may be collapsed into unique cases and weighted
by their frequency. For example, the corpus T of 49 million
characters contains nearly 780,000 occurrences of the bi-
gram th. Rather than doing inference on the entire chain of
text with the exact method, we need only do inference once
in a two-node chain for th and count it 780,000 times.

The character image parameters w are trained on 200
fonts, and the remaining 800 fonts are used as a valida-
tion set. The value of hyperparameter α for the Laplacian
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Information Accuracy FNR FPR HR
IG 84.04 11.42 0.51 91.07

IGIS 84.04 11.42 0.51 91.07
IGIB 87.92 9.14 0.53 93.81
IGIC 87.92 8.79 0.87 94.03

IGIBIC 91.65 6.85 0.66 98.68
IGIBICIS 93.22 5.45 0.14 99.26

Table 1. Recognition results (percentages) of the model with vary-
ing amounts of information. Overall character accuracy as well as
the false negative (FNR), false positive (FPR), and hit rate (HR)
for pairs (see text) are given.

prior that yields the highest likelihood on the validation set
is used for optimizing the posterior for w. The filter outputs
are scaled to 32 × 32 for the character identity energy UG.
Although some information from the highest frequency fil-
ters is lost, this reduces the dimensionality of w by a factor
of 16. The full-size filter outputs are used to calculate the
angle and subsequent distance between images. The finer
details are useful for these comparisons, and the dimension-
ality is not an issue.

3.3. Results

The results of character recognition with varying
amounts of information are given in Table 1. Using infor-
mation IX means adding the energies UX to the model. The
maximum posterior marginal (MPM) labeling

ŷi = arg max
y∈A

p
(
yi | x, θ̂, I

)
(20)

is used for inference, as opposed to the more typical MAP
labeling. MPM tends to give slightly higher accuracies than
MAP on our data and task, but with the same relative per-
formance between different amounts of information. The
marginals (which are exact except when IS is used) are
given by belief propagation. Loopy belief propagation fails
to converge on three difficult signs. Accuracy is the per-
centage of characters correctly identified (including case).
To evaluate the ability of our model to recognize different
instances of the same character in the same font, for intra-
sign and intra-font characters we measure:

False negative rate: Percentage of character pairs that are
the same but are given different labels.

False positive rate: Percentage of character pairs that are
different but are given the same label.

Hit rate: Percentage of character pairs that are the same,
given the same label, and correct (correctly labeled
true positives).

Information Accuracy FNR FPR HR
IS - 22.67 0.25 -

IS → IG 83.54 7.03 0.69 88.28
IS → IGIB 87.92 4.39 0.80 91.73
IS → IGIC 87.76 5.80 1.02 92.72

IS → IGIBIC 91.40 3.69 0.88 97.26

Table 2. Results of clustering followed by recognition and voting.

All of the differences in accuracy for the unified model (Ta-
ble 1) are statistically significant. (In all cases, significance
is assessed by a paired, two-sided sign test on the accuracy
per sign.) In particular, adding the similarity information
IS to IGIBIC improves accuracy with significance at the
p < 0.02 level. While the reduction of false negatives is not
significant with the addition of IS , the false positives are cut
by 79% (p < 0.0005).

For comparison, the method of clustering letters (within
a sign and font) was followed by voting on the cluster la-
bel. To cluster letters, we maximize p (y | x,ŝ, IS) for y

via simulated annealing, initialized at the prediction given
by IG (the strategy taken by Breuel [2]). A labeling based
on additional information (e.g., IG and IB) is then produced
by assigning the majority label to all members of a cluster
(ties are broken by choosing the label whose members have
the lowest average entropy for their posterior marginal, a
strategy which slightly outperforms random tie breaking).

The differences between false negative rates (say, be-
tween IGIB and IS → IGIB) are all significant (p <

0.005). There are two significant differences between false
positive rates: IGIB versus IS → IGIB (p < 0.005) and
IGIBICIS versus IS → IGIBIC (p < 0.000005). The
differences in accuracy are not significant, save for that of
IGIBICIS versus IS → IGIBIC (p < 0.005).

Another interesting comparison is provided by the likeli-
hood ratio of the data under models with different amounts
of information. Let D =

{
y(k),x(k)

}
k

represent our
evaluation label and image data. The geometric mean of
the likelihood ratio between the language-informed and
appearance-only models is




N∏

k=1

p
(
y(k) | x(k), θ̂, IG, IB , IC

)

p
(
y(k) | x(k), θ̂, IG

)




1

N

≈ 85.33. (21)

Adding the similarity information to the model also yields
an increase in belief about the correct labels for the data:




N∏

k=1

p
(
y(k) | x(k), θ̂, IG, IB , IC , IS

)

p
(
y(k) | x(k), θ̂, IG, IB , IC

)




1

N

≈ 1.02. (22)
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Figure 5. Examples of signs read correctly.

3.4. Discussion

Figure 5 contains examples of signs correctly read,
showing that the features are robust to various fonts and
background textures (e.g., wood and brick).

Although the number of characters per query is small
compared to OCR applications, adding similarity informa-
tion undoubtedly improves recognition accuracy, reducing
overall error by nearly 20%. Not surprisingly, most of this
improvement comes from greatly reducing the cases when
different characters are given the same label (pair false pos-
itives).

Perhaps surprisingly, adding similarity information to
the simple image information IG does not alter the results.
This is probably because test images have relatively lit-
tle noise and are mostly difficult due to font novelty and
nonfronto-parallel orientations. Therefore, it is expected
that the same characters, though novel, would often be given
the same label in different locations, due to their logical in-
dependence solely with information IG. However, when
other sources of information are introduced to help resolve
ambiguity, the similarity information does make a differ-
ence because the bigram and case information are based on
local context. This can push the beliefs about characters in
different directions, even though they tend to look the same,
because their contexts are different. Adding the similarity
information on top of these other sources ensures that the
local context does not introduce a contradictory bias. This
is demonstrated in Figure 1. Adding bigram information
pushes the second e to an a because preference for the ea
bigram outweighs both ee and the character/image energy.

Figure 6. Challenging signs that have unique fonts, are hand-
painted, or contain three-dimensional effects, real and virtual.

Similarly, adding case information pushes the l from be-
ing recognized as the upper case I to lower case t (due to
kerning in this italic font, some of the F overlaps in the l’s
bounding box, leaving a little crossbar indicative of a t). Fi-
nally, adding the similarity information corrects the l since
it is very different from the final t, and corrects the es since
they are very similar.

As expected, adding more prior information to the model
boosts the likelihood of the data. The model using appear-
ance alone is relatively weak, since a probability has an up-
per bound of one, yet the ratio in (21) is quite large. In
addition to improving the prediction accuracy, adding the
similarity information yields an increase in the degree of
belief for the correct labels, as shown by (22). Although
the increase is slight on average, more than ten percent of
the signs in our test data exhibit an increase of at least one
order magnitude. This could be important when confidence
in the model’s prediction helps to determine how to handle
a query.

The results of clustering the letters prior to recognition
appear worse than doing recognition outright with no sim-
ilarity information, though the difference is not significant.
However, unifying all the information available does yield
better results than a distinct clustering step. It is interesting
that clustering yields fewer false negatives than the unified
approach. This is most likely because clusters are not forced
to have different labels at the secondary assignment stage.
Thus, instances of the same character assigned to different
clusters are not forced to have different labels (up to the
fact that there are only as many clusters as characters in our
alphabet A). Indeed, if this were the case, the false nega-
tive rate would be intolerably high. Conversely, the clus-
tering preprocessing step does commit unrecoverable errors
by pairing characters that are not the same; subsequent in-
formation cannot reduce the false positive rate. This is es-
pecially critical because the probability of two characters
being the same a priori is much smaller than their being
different, thus the false positive rate has a greater impact on
total errors than the false negative rate.

Some signs in our data set present tremendous difficulty
and challenge the assumption that characters of the same
“font” appear similar. Some of these are due to rendered
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warping effects, custom fonts, or inconsistent shadow ef-
fects (see Figure 6). Other signs just have unique fonts that
are very different from those in the training set.

4. Conclusions

There are many important sources of information that al-
low humans to easily solve recognition tasks that remain
challenging for computers. Object similarity is an under-
used source of information in problems involving novel in-
put sources. In this paper, we have shown that using simi-
larity information can improve overall accuracy and greatly
reduce the particular error of giving different items the same
label. Our results show that the benefit of additional infor-
mation is maximized when used alongside all other infor-
mation within a unified framework, rather than in distinct
stages that make error recovery impossible. The probabilis-
tic model allows the various interpretations to be weighed
against each other in light of all available information be-
fore a final prediction must be made.

While we have demonstrated the utility of a unified ap-
proach to similarity on an application reading signs in natu-
ral scenes, it may prove useful in other tasks such as speech
and generic 3D object recognition.
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