Vis

Why faces?

Natural applications in human-computer
interfaces (teleconferencing, assistive
technology), organizing personal
photos, surveillance,...

Well-studied category, special structure

We'll touch on a only a few general
approaches

Faces

+ Detection: given an
image, where is the
face?

Recognition: whose
face is it?
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Challenges

Face pose
Occlusions
lllumination

Variable components (glasses,
mustache, etc.)

Differences in expression

Approaches

» Subspaces

— e.g. Turk and Pentland, Belhumeur and Kreigman

» Shape and appearance models

— e.g. Cootes and Taylor, Blanz and Vetter

* Boosting

— e.g. Viola and Jones

* Neural networks

— e.g. Rowley et al.

* SVMs

— e.g. Heisele et al., Guo et al.

*+ HMMs

— e.g. Nefian et al.

Eigenpictures/Eigenfaces

Sirovitch and Kirby 1987: PCA to
compress face images

Turk and Pentland 1991: PCA + nearest
neighbors to classify face images

Main idea: face images are highly
correlated; low-d subspace captures
most appearance variation




Images as high-dimensional points

* Around d=80,000 pixels
each

* To represent the space

accurately, want num
samples >>d

» But space of face
images actually much
smaller than space of all
80,000 dimensional
images

PCA intuition

+ Construct lower
dimensional linear
subspace that best
explains variation of
the training examples

\ Pixel value 2

Pixel value 1

@ A face image
@ A (non-face) image

PCA

+ N data points: X;5...,Xy  X; in R?
* Mean vector W, covariance matrix

What unit vector u in RY captures the
most possible variance of the data?

PCA
. N—1 Pixel value 1
var(u) = v Z u (x; — p)(u(x; — p))*
=l S
projection of data point
N-—1
= u"'[ Z (x; — p)(xi — p)f|u
=1

covariance of data points
= wXZu

Maximizing this is an eigenvalue problem-> use eigenvector(s) of
2 that correspond to the largest eigenvalue(s) as the new basis.

Eigenfaces

» Premise: Set of faces lie in a subspace of set
of all images

» Use PCA to determine the k (k<d) vectors
u,,...u, that span that subspace:
X =~ M+ WUy + Wol, + L+ WUy
* Then essentially use nearest neighbors in

“face space” coordinates (wy,...w,) to do
recognition

Eigenfaces

Training
images:




Eigenfaces

Eigenface recognition

» Process labeled training images:
— Run PCA
— Project each training image onto subspace
» Given novel image:
— Project onto subspace
— If reconstruction error too large
Not a face
— Else if too far from any training face
Unknown face
— Else
Classify as closest training face in k-dimensional subspace

9 closest to mean

Eigenfaces

Face x in “face space” coordinates:

Small demo
+ Eigenfaces on the face images in the

Caltech-4 database
* 435 images, same scale, aligned
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Visualizing the primary modes of variation
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Visualizing the primary modes of variation
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Clustering in the face subspace
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Clustering in face subspace

Clustering in face subspace
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Limitations

PCA useful to represent data, but directions
of most variance not necessarily useful for
classification (see work by Belhumeur &
Kreigman using LDA)

Not appropriate for all data: PCA is fitting
hyperplane to data / Gaussian where % is
covariance matrix (see nonlinear techniques)

In this application, assumptions about pre-
processing applied to face images may be
unrealistic

Suited for what kinds of categories?




Fisherfaces

Belhumeur et al. PAMI
1997

2 Rather than maximize
scatter of projected
classes as in PCA,
maximize ratio of

‘ between-class scatter to
within-class scatter by
using Fisher’s Linear
Discriminant

Non-linear dimensionality reduction

* Locally Linear Embedding (LLE), Roweis
and Saul

* Isomap, Tenenbaum et al.
» Kernel PCA, Scholkopf et al.
 Laplacian Eigenmaps, Belkin and Niyogi

Image credit; Roweis and Saul

Active appearance models

» Eigenfaces model appearance only, and
so cannot be robust to shape, pose and
expression changes

« Active appearance models (Cootes and
Taylor) model shape and appearance

Active appearance models

Factor out the faces’ shape differences when
comparing their texture / appearance

Coming up

» For Thursday: more on faces
— Read Viola and Jones, and Sinha et al.
— Review on Viola and Jones due
— Zubair will present
» For Tuesday: part-based models
— Read Felzenszwalb and Huttenlocher
— Review due
— Pushkala will present
— Demo?




