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Part-based models for
recognition: matching

Tuesday, January 30

Part-based models

» Today: focus on efficient matching

» Thursday: focus on representation and
learning of parts

Types of recognition approaches

* pose consistency; geometry
« global measures of appearance
* local measures of appearance

« local part appearance and relative
geometry

Particular systems may have aspects of one
or more type

(3D) Model-based approaches

« Alignment/pose consistency: fit projected
model to image data

« Index invariants and verify
» Geometry is key
s

[Lowe 1991]
i 2\

Model Observed edges, Projected model

previous location [Rothwell et al. 1992]

(3D) Model-based approaches

Challenges:

 Constructing the model

 Poor scaling with number of models
» Occlusions

» Ambiguity without strong appearanc

.

evidence
» Generic categories?

Appearance-based approaches

* Recognize by matching overall appearance
» Windowed search (multi-scale/orientation)
* Match “templates”, build classifiers

» Represent space of variation from examples,
or model separately (e.g. frontal vs. profile

faces)
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Eigenfaces, Turk and Skin detection, Jones and Pedestrians and faces, Viola
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Appearance-based approaches

Advantages:

» Capture characteristic appearance
properties, if they exist

» Many existing learning techniques
applicable depending on feature choice

Challenges:
« Clutter, occlusion sensitivity

 Capturing variation for generic categories
or complex objects

Local appearance approaches

Decompose image into local parts, | [/ »>— '
describe appearance of each part '

* Index via voting, +/- local geometry
constraints [Schmid, Lowe,
Tuytelaars, -(et al)....]

« Compare distribution of local
appearance patches (“bags of
features”) [Leung, Csurka, Sivic,
Lazebnik, -(et al)....]

Local appearance approaches

Advantages:

 Local appearance often simpler and more
reliable, easier to detect and learn

* Possibilities for handling occlusions and
clutter

« Invariant local features (coming up) are
distinctive and repeatable, especially for
object instances

» With sparse set: # regions << # pixels

Local appearance approaches

Challenges:
 Large-scale indexing problems (voting)
* Single feature matching assumes independence

» Sparse interest operators may bias towards
particular types of regions (e.g., textured)

» How to define a feature “vocabulary”?
» Geometry gone (bags of features)
* Localization

(More on these approaches in coming weeks.)

Local appearance+geometry

Part-based models, constellation models

» Model for an object/class is set of parts and
their spatial relationships

* Model fit is measured by

— similarity of the part appearance ?Z:*
— parts’ geometry agreement w ‘"‘;)“%)
e

Fischler and Elschlager 1973
e
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Leung, Burl, Perona 1995

Felzenszwalb and Huttenlocher 2000 \Weber, Welling, Perona 2000

Local appearance+geometry

Advantages:

* Local appearance may be simpler, reliable
* Possibilities to handle clutter/occlusion

« Maintain configuration information

 Possibilities to exploit independence
properties among parts for computational
gain

 Capture variations of complex objects
more succinctly




Local appearance+geometry

Challenges:
* Invariant geometric constraints

» Computational issues:
correspondences, matching

» Can sparse parts scale for large
number of categories?

 Constructing/learning models

Part-based models: History

Fischler & Elschlager 1973

Yuille ‘91

Brunelli & Poggio ‘93

Lades, v.d. Malsburg et al. ‘93
Cootes, Lanitis, Taylor et al. ‘95
Amit & Geman ‘95, ‘99

Perona et al. ‘95, ‘96, '98, '00
Felzenszwalb & Huttenlocher '00

Many papers since 2000

[This and some of following slides from R. Fergus’s ICCV 2005 tutorial]

The correspondence problem

* Model with P parts
» Image with N possible locations for each part

* NP combinations!!!

Efficient search methods
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* Interpretation tree (Grimson '87)

— Condition on assigned parts to
give search regions for remaining
ones

— Branch & bound, A*
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Connectivity of parts

« Complexity is given by size of maximal clique in graph
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Fully
connected Star structure Tree structure
O(N9) O(N?) O(N?)

Sparser graphs cannot capture all interactions between
parts, but reduced structure can be exploited to simplify
computation.

Some class-specific graphs

« Articulated motion
— People
— Animals

« Special parameterisations
— Limb angles

-

Images from [Kumar05, Felzenszwalbos)




Distance transforms

* Set of points, P, some distance | |
Dp(x) = minyp Ix -yl
- For each location x distance to nearest y in P
- Think of as cones rooted at each point of P

= Commonly computed on a grid I using
Dp(x) = miny. (Ix -yl + 1p(y) )

- Where 1p(y) = 0 when yeP, = otherwise
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Distance transforms

Efficiently computed with dynamic
programming

Useful for
— Chamfer measure
— Hausdorff distance

— Matching tree structured part-based

models [Felzenszwalb and Huttenlocher
2000]: O(N2P) > O(NP) time

Low-distortion correspondences

[Berg, Berg, and Malik CVPR 2005]
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Enforce relationship constraints among corresponding features:

Measure distortion in vectors between pairs of feature points, i.e.,
changes in direction or length.

[Figure from Alex Berg]

Low-distortion correspondences

= e

Exemplar with P features Query with N features

« Exemplar(s) define model

« Formulate as Integer Quadratic Programming problem

* O(NP) in general

+_Use approximation that takes O(P2 N log(N))Hifi&e< from Alex Rerqll

Approximate matching cost

* O(P) apprOXimationS for O(Pg) min Z Dia,m(a))
optimal assignment problem mATE A

¢ No configuration geometry, but
encodings of local geometry ok
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Bijective matching : Partial matching :
[Indyk and Thaper 2003] [Grauman and Darrell 2005]

comparing color histograms for partial match kernel for efficient
fast nearest-neighbor retrieval learning from sets of features

Geometric embeddings

* Map inputs to a space where an inexpensive
distance approximates an expensive one

Di(A,B) <= || f(A) - f(B) || < C - D(A.B)




Approximate partial matching

. :qu

Compare sets by
computing a partial
matching between their
features.

Pyramid match overview

Pyramid match measures similarity of a
partial matching between two sets:

« Place multi-dimensional, multi-resolution
grid over point sets

« Consider points matched at finest resolution
where they fall into same grid cell

* Approximate optimal similarity with worst
case similarity within pyramid cell

No explicit search for matches!

Pyramid match overview
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Pyramid match

Number of newly
matched pairs at level i

|

L
Approximate
partial match KA = E ’lU@Nz

similarity
1=0

Measure of difficulty
of a match at level i

[Grauman and Darrell, ICCV 2005]

Pyramid extraction

X=A{%,....Xn} X R

Histogram
pyramid:

level ¢ has bins
of size 2°

Hy(X) Hi(X) Ha(X) H;(X)

¥(X) = [Ho(X),..., H(X)]

Counting matches

Histogram 7 pr () p(y) ) =D min(H(X);, H(Y),)

intersection —
=

H(X) X Y

T(H(X), H(Y)) =




Counting new matches

T(H(X),H(Y)) =) min(H(X);, H(Y);)

i=1

Histogram
intersection

matches at this level matches at previous level

N; =TI (H:i(X),Hi(Y))—I(H;—1(X), H;-1(Y))

I

Difference in histogram intersections across
levels counts number of new pairs matched

Pyramid match
histogram pyrarmids
Ka (¥(X), ¥(Y)) =
i Qi (I (Hi(X), H;(Y))~Z(H;_1 (X). H.,-_](Y}))

I number of newly matched pairs at level i

i=0

measure of difficulty of
a match at level i

 For similarity, weights inversely proportional to bin size
 For cost, weights proportional: u; = 2

« Normalize values to avoid favoring large sets

Efficiency

Pyramid match _
complexity O (dT?LL )

¢ feature dimension
mm, setsize
L = log(D) number of pyramid levels

D range of feature values

for uniformly-sized bins

Example pyramid match

No =
T (Ho(X), Ho(Y)) = 2— o =2
Hy X Y Ho(Y)
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Example pyramid match

Ny=4-2=2
T(Hy(X), Hy(Y)) =4 — "1 2%
Hy(X) X Y Hy(Y)
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Example pyramid match
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I(Hz(x)Hz(Y)) =5 — Ny irsl_4 =1
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Example pyramid match

L

Ka = z w; N;

1=()

pyramid match
v

=1(2) + 3(2) + (1) = 3.25

optimal match

Pyramid match properties

Linear time matching
Mercer kernel

Bounded approximation error relative to
optimal partial matching cost

Sub-linear time hashing over matching

Coming up

Thursday, Feb 1

— Weber et al. and Fergus et al. papers on constellation
models

— Demo?

Next week: Invariant local features

— Demo?

Project plans:

— Find your partner

— We'll talk about proposal scope the week after next




