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Part-based models for 
recognition: matching

Tuesday, January 30

Part-based models

• Today: focus on efficient matching
• Thursday: focus on representation and 

learning of parts

Types of recognition approaches

• pose consistency; geometry
• global measures of appearance
• local measures of appearance
• local part appearance and relative 

geometry

Particular systems may have aspects of one 
or more type

(3D) Model-based approaches

• Alignment/pose consistency: fit projected 
model to image data

• Index invariants and verify
• Geometry is key
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Model Observed edges, 
previous location

Projected model
[Rothwell et al. 1992]

(3D) Model-based approaches

Challenges:
• Constructing the model
• Poor scaling with number of models
• Occlusions
• Ambiguity without strong appearance 

evidence
• Generic categories?

Appearance-based approaches

• Recognize by matching overall appearance
• Windowed search (multi-scale/orientation)
• Match “templates”, build classifiers
• Represent space of variation from examples, 

or model separately (e.g. frontal vs. profile 
faces)

Eigenfaces, Turk and 
Pentland 1991

Skin detection, Jones and 
Rehg 1999

Pedestrians and faces, Viola 
and Jones, 2001, 2003

MNIST database of 
handwritten digits
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Appearance-based approaches

Advantages:
• Capture characteristic appearance 

properties, if they exist
• Many existing learning techniques 

applicable depending on feature choice

Challenges:
• Clutter, occlusion sensitivity
• Capturing variation for generic categories 

or complex objects

Local appearance approaches

Decompose image into local parts, 
describe appearance of each part

• Index via voting, +/- local geometry 
constraints [Schmid, Lowe, 
Tuytelaars, -(et al).…]

• Compare distribution of local 
appearance patches (“bags of 
features”) [Leung, Csurka, Sivic, 
Lazebnik, -(et al).…]

databasequery

query

Local appearance approaches

Advantages:
• Local appearance often simpler and more 

reliable, easier to detect and learn
• Possibilities for handling occlusions and 

clutter
• Invariant local features (coming up) are 

distinctive and repeatable, especially for 
object instances

• With sparse set: # regions << # pixels

Local appearance approaches

Challenges:
• Large-scale indexing problems (voting)
• Single feature matching assumes independence
• Sparse interest operators may bias towards 

particular types of regions (e.g., textured)
• How to define a feature “vocabulary”?
• Geometry gone (bags of features)
• Localization

(More on these approaches in coming weeks.)

Local appearance+geometry

• Model for an object/class is set of parts and 
their spatial relationships

• Model fit is measured by
– similarity of the part appearance
– parts’ geometry agreement

Leung, Burl, Perona 1995

Fischler and Elschlager 1973

Felzenszwalb and Huttenlocher 2000 Weber, Welling, Perona 2000

Part-based models, constellation models

Local appearance+geometry

Advantages:
• Local appearance may be simpler, reliable
• Possibilities to handle clutter/occlusion
• Maintain configuration information
• Possibilities to exploit independence 

properties among parts for computational 
gain

• Capture variations of complex objects 
more succinctly 
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Local appearance+geometry

Challenges:
• Invariant geometric constraints
• Computational issues: 

correspondences, matching
• Can sparse parts scale for large 

number of categories?
• Constructing/learning models

Part-based models: History

• Fischler & Elschlager 1973

• Yuille ‘91
• Brunelli & Poggio ‘93
• Lades, v.d. Malsburg et al. ‘93
• Cootes, Lanitis, Taylor et al. ‘95
• Amit & Geman ‘95, ‘99 
• Perona et al. ‘95, ‘96, ’98, ’00
• Felzenszwalb & Huttenlocher ’00

• Many papers since 2000

[This and some of following slides from R. Fergus’s ICCV 2005 tutorial]

The correspondence problem
• Model with P parts
• Image with N possible locations for each part

• NP combinations!!!

Efficient search methods

• Interpretation tree (Grimson ’87)
– Condition on assigned parts to 

give search regions for remaining 
ones

– Branch & bound, A*

Connectivity of parts
• Complexity is given by size of maximal clique in graph
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Tree structure

O(N6) O(N2) O(N2)

Sparser graphs cannot capture all interactions between 
parts, but reduced structure can be exploited to simplify 
computation.

Some class-specific graphs
• Articulated motion

– People
– Animals

• Special parameterisations
– Limb angles

Images from [Kumar05, Felzenszwalb05]
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[Slide from D. Huttenlocher’s 2003 tutorial]

Distance transforms Distance transforms
Efficiently computed with dynamic 

programming

Useful for 
– Chamfer measure
– Hausdorff distance
– Matching tree structured part-based 

models [Felzenszwalb and Huttenlocher
2000]: O(N2P) O(NP) time

Low-distortion correspondences

i i '

j j '

i i'

j j' QueryTemplate Rij Si'j'

Enforce relationship constraints among corresponding features:

Measure distortion in vectors between pairs of feature points, i.e., 
changes in direction or length.

[Berg, Berg, and Malik CVPR 2005]

[Figure from Alex Berg]

Query with N featuresExemplar with P features

• Exemplar(s) define model
• Formulate as Integer Quadratic Programming problem
• O(NP) in general
• Use approximation that takes O(P2 N log(N)) time.

Low-distortion correspondences

[Figures from Alex Berg]

Approximate matching cost
• O(P) approximations for O(P3) 

optimal assignment problem
• No configuration geometry, but 

encodings of local geometry ok

Bijective matching : 

[Indyk and Thaper 2003] 
comparing color histograms for 
fast nearest-neighbor retrieval

Partial matching : 

[Grauman and Darrell 2005] 
partial match kernel for efficient 
learning from sets of features

Geometric embeddings

• Map inputs to a space where an inexpensive 
distance approximates an expensive one

Dm(A,B) <= || f(A) - f(B) || < C · Dm(A,B)

f
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Approximate partial matching

Compare sets by 
computing a partial
matching between their 
features.

Pyramid match overview

optimal partial 
matching

Pyramid match overview

• Place multi-dimensional, multi-resolution 
grid over point sets

• Consider points matched at finest resolution 
where they fall into same grid cell 

• Approximate optimal similarity with worst 
case similarity within pyramid cell

No explicit search for matches!

Pyramid match measures similarity of a 
partial matching between two sets:

Pyramid match

Number of newly 
matched pairs at level i

Measure of difficulty 
of a match at level i

Approximate 
partial match 

similarity

[Grauman and Darrell, ICCV 2005]

Pyramid extraction

,

Histogram 
pyramid:      
level i has bins 
of size

Counting matches
Histogram 
intersection
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Counting new matches

Difference in histogram intersections across 
levels counts number of new pairs matched

matches at this level matches at previous level

Histogram 
intersection

Pyramid match

• For similarity, weights inversely proportional to bin size

• For cost, weights proportional: 

• Normalize values to avoid favoring large sets

measure of difficulty of 
a match at level i

histogram pyramids

number of newly matched pairs at level i

Efficiency

Pyramid match 
complexity 

feature dimension

set size

number of pyramid levels

range of feature values
for uniformly-sized bins

Example pyramid match

Example pyramid match Example pyramid match
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Example pyramid match
pyramid match

optimal match

Pyramid match properties

• Linear time matching
• Mercer kernel
• Bounded approximation error relative to 

optimal partial matching cost
• Sub-linear time hashing over matching

Coming up

• Thursday, Feb 1
– Weber et al. and Fergus et al. papers on constellation 

models
– Demo?

• Next week: Invariant local features
– Demo?

• Project plans: 
– Find your partner
– We’ll talk about proposal scope the week after next


