Face Recognition Using Active Appearance Models (Edwards et al, 1998)

Overview

- New framework for interpretation of face images & image sequences using **Active Appearance Model (AAM)**

<table>
<thead>
<tr>
<th>Data</th>
<th>Method</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face Images</td>
<td>Active Appearance Model (AAM)</td>
<td>Identification & Expression Recognition</td>
</tr>
<tr>
<td>Face Image Sequences</td>
<td></td>
<td>Identification & Tracking</td>
</tr>
</tbody>
</table>

Objective

- To develop **full, photo-realistic model-based** approach to face recognition
 - **model-based**: formulating a model to interpret face images and representing them by a set of parameters
 - **full**: using all information given in the image
 - **photo-realistic**: able to match directly between the image and model-synthesized example

Problem Statement

- Apply developed approach to face images and image sequences, and show that:
 - **Images**: Good recognition performance for personal identification and expression recognition
 - **Image Sequences**: Stable estimate of personal identification

Background

- Eigenface (Turk & Pentland, 1991)
 - Utilizing only appearance information of a face
 - Not robust to expression, pose variations
 - Synthesizing new views of a face from a set of example views
 - Not able to generalize to unseen images
- Active Shape Model (ASM) (Cootes et al)
 - Using shape & local appearance information
 - Still not using full information given

Overall Diagram
AAM Modeling

1. Alignment
 Align all the sets of points into a common coordinate frame
 \[\begin{bmatrix} x_1, y_1, \ldots, x_n, y_n \end{bmatrix} \]

2. PCA
 \[x = \mu + P s \]
 \[g = \mu + P b \]

3. PCA
 \[x = \mu + P s \]
 \[g = \mu + P b \]

4. Combine & PCA
 Combine two vectors with weights & PCA
 \[b = Q c \]

AAM Search

Task: Find a set of **AAM parameters** that best matches a new image based on the AAM model generated by the training set

Optimization Problem
- Same for any new images: global solution
- How to solve?
 - 1. Find the relationship between image error and parameter changes
 - 2. Using the relationship, adjust parameters to reduce the error until it converges

Feature Selection

- **Linear Discriminant Analysis (LDA)**
 - Objective
 - Find the most discriminative feature (ID vs non-ID)
 - Assumption
 - Within-class variation is similar for each person
 - Covariance matrix provides good overall estimate
 - Task
 - Apply LDA to sets of parameters from training data
 - Result
 - Discriminant parameters

Conclusion

- Utilize shape and whole appearance information
 - succeed to use all the information
- Apply LDA to AAM parameters
 - succeed to decouple ID parameters and non-ID parameters
- Use a specific intra-class scatter matrix from image sequences
 - improve the stability of ID recognition
- Provide a basis for scene interpretation of face images

Experiment

- **Database**
 - 400 face images
 - with expression, pose, illumination variations
 - 200 training, 200 test
- **Images**
 - Identity: Equal performance with hand work
 - Expression: Lower recognition rate than human
- **Image Sequences**
 - Stable Estimate of identification