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What is context?

Any data or meta-data not directly produced 
by the presence of an object

– Nearby image data
– Scene information
– Presence, locations of other objects

Tree

Clues for Function

What is this?

Now can you tell?

Low-Resolution Scenes

What is this?

Now can you tell?

More Low-Resolution

What are these blobs?

More Low-Resolution

The same pixels! (a car)



Why is context useful?

Objects defined at least partially by function
– Context gives clues about function

Objects like some scenes better than others

Many objects are used together and, thus, 
often appear together

Kettle and stove
Keyboard and monitor

Context

Neighbor-based context
– Nearby image data

Scene-based context
– Scene information

Object-based context
– Presence, locations of other objects

Outline

Combining local, bottom-up information with 
global, top-down information using graphical 
model

– Boosting-based object recognition
– Scene learning and classification
– Joint classification and detection
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Object detection

Three families
– Parts-based

– Region-based

– Patch-based

Object-detection can be a binary classification problem
calculate for each class c and patch i
# of patches: 5000 
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Features for objects and scenes(1)

Same set of features for objects and scenes
13 zero-mean filters

To summarize histogram : variance (k=2) 
and kurtosis (k=4)
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Features for objects and scenes(2)

30 spatial templates

– Size of feature vector : 13 X 30 X 2 = 780

Component k of the feature vector for patch i
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Classifier  

The input is a set of weighted training 
samples (v,y,w) 

Regression stumps: simple but commonly 
used in object detection.

Logistic regression
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Classifier - Boosting 

Boosting fits the additive model

by minimizing the exponential loss

Training samples

The exponential loss is a differentiable upper bound to the misclassification error.

Classifier - gentleBoosting

We chose            that minimizes the cost:

At each iterations we 
just need to solve a 
weighted least squares 
problem

Weights at this iteration

Instead of doing exact optimization, gentle 
Boosting minimizes a Taylor approximation of 
the error: 

Classifier  

The input is a set of weighted training 
samples (v,y,w) 

Regression stumps: simple but commonly 
used in object detection.

Logistic regression
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Examples of learned features

Some features after 100 rounds of boosting
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Object Localization Using Gist (1)

Motivation: To improve the speed and 
accuracy by reducing the search space
Approach
– Predict probable locations/scales (continuous)
– Take the probability into account in detectors

How can we predict? 
Gist: A feature vector summarizing the 
whole image [A. Torralba, 2003]

Object Localization Using Gist (2)

Calculation of the gist
1) Take a whole image as a single patch
2) Compute a feature vector in the same way for 

object detection
3) Reduce the feature dimension by PCA (PCA-gist)

Prediction of location/scale using the gist
● by boosted regression
● Cannot predict horizontal location 
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Object Localization Using Gist (3)

Object Detection using gist
1) Construct a new feature vector

- Output of the boosted detector 
- Distance between the predicted & the patch 

2) Train a classifier by logistic regression 

Result:
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Object Presence Detection (1) 

Object presence: is it there? 
(c.f. Object localization: where is it?)

Approaches (Calculate                       )
– Take OR of all detectors

massive over-confidence due to the dependence

– Approximate the OR 
high probability of error

– Use the gist w/o object detectors
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Object Presence Detection (2) 

Presence detection using gist
1) Train a classifier by boosting 
2) Construct a new feature vector 

- Output of the local boosted classifier
- Output of the global boosted classifier

3) Combine them by logistic regression 
Result:
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Object Presence Detection (3) 

Example

Scene Classification

Motivation: To model the correlation among 
the presence of different objects
Feature: Gist 
Category: Office, Corridor, Street
Approach
1) Train a one-vs-all binary classifier by boosting 
2) Normalize the results
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Joint Scene Classification and Object 
Presence Detection (1)

Motivation: Both tasks can be done by the gist 
Approach
– Assumption: Objects are conditionally independent 

given the scene
– Graphical model: Tree structure

Joint Scene Classification and Object 
Presence Detection (2)

Joint probability density model

– c=1:n (c; # of object classes)
– i=1:N (N; # of patches)
– Z; a normalizing constant
– ; output of the scene classifier
– ; table for # of occurrences of object c in scene S
–

Train it jointly using a gradient procedure
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Conclusion

Proposed an approach to object detection 
using scene-based context
Extended to basic scene classification
Showed how to combine global and local 
features for object detection and scene 
recognition

Questions?



Reference website

http://people.csail.mit.edu/torralba/iccv20
05/slides/part_3.ppt. 
www.cs.cmu.edu/~tmalisie/presentations/
opposition_to_window_scanning.ppt
www.vision.ee.ethz.ch/~rkehl/tracking.ht
ml


