

Overview (1)

• Origins of Geometric Hashing

- Developed as a solution to computer vision problem
- Find common substructures in a scene regardless of rotation, translation, scale, and occlusion

• Applications

- Robotic memory of a tool on an assembly line
- Database image queries
- Structural molecule comparison (Protein)
- Security fingerprint and face recognition
- Medical detection of irregularities on images (MRI,Xray)

Overview (2)

- Several Aspects of Geometric Hashing
 - Ability to recognize objects that have undergo an arbitrary transformation.
 - Can perform partial matching.
 - Efficient and can be parallelized easily.
 - Use transformation-invariant access key to the hash table.
 - Two phases (preprocessing and recognition).
 - Require a large memory to store hash table.

Reference Frames

- A method to compare two sets of points in similaritytransform invariant way
- Define coordinate systems for both figures (A, B), called
- Two points (basis pair) can define a reference frame, e.g., origin at one of them, and one of the axis through both points.
- The coordinates of the points are computed in the reference frame, constituting a reference frame system
- Count how many pair of points (one from each figure) have the same coordinates

Remarks on Reference Frames

The number of coincident points depends on the *resolution* of the coordinate system, and on the *basis pairs* used.

- Generally, all combination of points should be used as basis pairs, resulting in comparing (m(m-1)/2)x(n(n-1)/2) reference frame systems
- Using all combinations might introduce **redundancy**. Let (a_i, a_k) and (b_j, b_j) be the basis pairs, and (a_r, b_w) and (a_s, b_w) both coincide. Then it is likely that the same coincidence set is found if (a_r, a_s) and (b_w, b_v) are used as basis. Note however that similarity and not exact equality is used.

- For each model m, do the following
- 1. Extract the model's point features. Assume that n such features are found
- 2. For each ordered pair, or basis, of point features do the following:
 - a. Compute the coordinates (*u*, *v*) of the remaining features in the coordinate frame defined by the basis.
 - b. After proper quantization, use the tuple (u_i, v_0) as an index into 2D hash table data structure and insert in the corresponding hash table bin the information (m, (basis)), namely the model number and the basis tuple used to determine (u_0, v_0) .

Recognition Phase – cont'd

- Histogram all has table entries that received one or more votes during step 4. Proceed to determine those entries that received more than a certain number, or threshold, of votes. Each such entry corresponds to a potential match
- For each potential match discovered in step 5, recover the transformation T that results in the best least-squares match between all corresponding feature pairs.
- 7. Transform the features of the model according to the recovered transformation T and verify them against the input image features. If the verification fails, go back to step 2 and repeat the procedure using a different image basis pair.

• Access hash table entries to find candidates for matching models

Under Various Transformations (1)

- Translation in 2D and 3D.
 - 1-point basis.
 - O(n^2).
- Similarity transformation in 2D.
 - 2-point basis.
 - O(n^3).
- Similarity transformation in 3D.
 - 3-point basis.
 - O(n^4).

Under Various Transformations (2) Affine transformation 3-point basis. O(n^4) Projective transformation 4-point basis. O(n^5)

Recognition of 3D Objects from 2D Images (1/5)

- Correspondence of planes
- Preprocessing: consider planar sections of the 3D object which contain three of more interest points.
- Hash (model, plane, basis) triplet.
- Use either projective transformation or affine transformation.
- Once the planes correspondence have been established, the position of the entire 3D body is solved.

Recognition of 3D Objects from 2D Images (2/5) 2. Singular affine transformation • A x + b = U where • A : 2x3 affine matrix • X : 3x1 3D vector • 2x1 2D translation vector • U : 2x1 image

Recognition of 3D Objects from 2D Images (3/5)

A set of four non-coplanar points in 3D defines a 3D affine basis:

- One point as origin
- The vectors between origin and the other three points as the unit (oblique) coordinate system.
- Preprocess the model points in this fourbasis point.

Recognition of 3D Objects from 2D Images (4/5)

Recognition:

- Pick four points: p_0 , p_1 , p_2 , and p_3 --> three vectors: v_1 , v_2 , and v_3 in the 2D image.
- *Exists*: $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3 = \mathbf{0}$, where $(\alpha, \beta, \gamma) \neq \mathbf{0}$
- A point p in the image, with v be the vector from p₀
 to p.
- Vote for all t ≠ 0 (*a line with parameter* t):
 - $v = (\xi + t\alpha) v_I + (\eta + t\beta) v_2 + (t_i) v_3$, where (ξ, η) is the coordinate of *v* in the $v_P v_2$ basis.

Recognition of 3D Objects from 2D Images (5/5)

- Establishing a viewing angle with similarity transformation.
- Tesselate a viewing sphere (uniform in spherical coordinates).
- Record (model, basis, angle) in the hash table.
- 2-point basis: O(n³) (the same order as without viewing angle because the viewing angle introduces only a constant factor -- independent of the scene).

Recognition of Polyhedral Objects

Bayesian formulation

• Maximum likelihood approach

- $Pr((Mk, i, j, B) \mid S')$
 - *Mk* is model *k*
 - *i,j* are points that match the ref<u>erence set</u>
 - *B* is the basis set
 - *S*' is the set of points calculated relative to *B*

 $\log(\Pr((M_k, i, j, B))) + \sum_{p_{\xi} \in S} \log\left(\frac{\Pr(p_{\xi}|(M_k, i, j, B))}{\Pr(p_{\xi})}\right)$

• Maximize:

Conclusions

- The method is based on the representation of objects by point sets and matching corresponding sets of points
- By applying geometric constraints these sets of points further represented by a small subset of points (basis points) The size of the basis depends on the transformation applied to the models
 - A basis of 2 points is sufficient for 2-D scenes under rotation, translation and scale $% \left({{{\left[{{{\rm{T}}_{\rm{T}}} \right]}}} \right)$
 - A basis of 3 points is sufficient for affine transformation for the perspective view
- The process is divided into preprocessing and recognition reduces complexity, enables off-line preprocessing

References

- Papers
 Y. Lamdan and H. Wolfson, "Geometric hashing: A general and efficient model-based recognition scheme," ICCV 1988
 H.J. Wolfson and I. Rigoutsos. "Geometric Hashing: An Overview." IEEE Computational Science & Engineering, 1997.
- Slides
 B.Prunomo, Geometric Hashing, Johns Hopkins Univ., 2004
 J.Costello, A.Kukuch, and T.Tatge, Geometric Hashing, Indiana University, 2006
 I.Eidhammer and I.Johassen, Protein Structure Comparison and Structure Patterns- an Algorithmic Approach, Tutorial, ISMB 2001
 Spring 2006 Visual Recognition, Lecture notes, Technion Israel Institute of Technology