
Sharing features: Efficient Booting
Procedures for Multi-class Object

Detection

Antonio Torralba, Kevin Murphy and Bill Freeman

(Presented by Xu, Changhai)

Most of the slides are copied from the authors’ presentation

Multi-class object
detection:

Local
features no car

Classifier
P(car | vp)

Vp

no cow
Classifier

P(cow | vp)

no person
Classifier

P(person | vp)

…

Bookshelf

Desk

Screen

Desired detector outputs:

One patch

Why multi-object detection is a hard problem

viewpoints

Need to detect Nclasses * Nviews * Nstyles, in clutter.
Lots of variability within classes, and across viewpoints.

Object classes

Styles, lighting conditions, etc, etc, etc…

The approach

• Share features across objects, automatically
selecting the best sharing pattern.

• Benefits of shared features:
– Efficiency

• Sharing computations across classes
– Accuracy
– Generalization ability

• Sharing generic knowledge about detecting objects

Object class 1

Total number of hyperplanes
(features): 4 x 6 = 24. Scales
linearly with number of classes

Independent
features

Object class 2

Object class 3

Object class 4
Total number
of shared
hyperplanes
(features): 8

May scale sub-linearly with
number of classes.

Shared
features

Additive models for classification

+1/-1 classification
classes

feature responses

Feature sharing in additive models

Multi-class Boosting
We use the exponential multi-class cost function

classes

classifier
output for
class c

membership
in class c,
+1/-1

cost
function

Weak learners are shared

At each boosting round, we add a perturbation
or “weak learner” which is shared across
some classes:

Multi-class Boosting

weight squared errorWeight squared
error over training
data

θ

a+b

b vf
Feature output, v

Specialize weak learners to decision stumps

hm (v,c)

θ

a+b

b vf

Given a sharing pattern, the
decision stump parameters

are obtained analytically

Feature output, v

Find weak learner parameters analytically

hm (v,c)

Joint Boosting: select sharing pattern and
weak learner to minimize cost.

Conceptually,

for all features:
for all class sharing patterns:

find the optimal decision stump, hm(v,c)
end

end

select the hm(v,c) and sharing pattern that minimizes the
weighted squared error Jwse for this boosting round.

Approximate best sharing
To avoid exploring all 2C –1 possible sharing patterns, use best-first
search:

S = []
% Grow a list of candidate sharing patterns, S.
while length S < Nc

for each object class, ci, not in S
% consider adding ci to the list of shared classes, S
for all features, hm

evaluate the cost J of hm shared over [S, ci]
end

end
S = [S, cmin_cost]

end
Pick the sharing pattern S and feature hm which gave the minimum
multi-class cost J.

Effect of pattern of feature sharing on number of
features required (synthetic example)

Effect of pattern of feature sharing on number of
features required (synthetic example)

(best first search heuristic)

Now, apply this to images.
Image features (weak learners)

32x32 training image of an object
12x12 patch

Location of that patch
within the 32x32 object

gf(x)
Mean = 0
Energy = 1

wf(x)
Binary mask

Feature output

The candidate features
template position

The candidate features

Dictionary of 2000 candidate patches and position masks,
randomly sampled from the training images

template position

Example shared feature (weak classifier)

At each round of
running joint
boosting on training
set we get
a feature and a
sharing pattern.

Response
histograms for

background
(blue) and class
members (red)

How the features were shared across objects
(features sorted left-to-right from generic to specific)

Performance evaluation

Area under ROC (shown is .9)

False alarm rate

C
or

re
ct

 d
et

ec
tio

n
ra

te

Performance improvement over training

Significant
benefit to
sharing features
using joint
boosting.

70 features, 20 training examples (left)

Shared features Non-shared features

15 features, 20 training examples (mid)
70 features, 20 training examples (left)

Shared features Non-shared features

15 features, 2 training examples (right)
15 features, 20 training examples (middle)

70 features, 20 training examples (left)

Shared features Non-shared features

Scaling
Joint Boosting
shows sub-linear
scaling of features
with objects (for
area under ROC =
0.9).

Results averaged
over 8 training sets,

and different
combinations of

objects. Error bars
show variability.

Generic vs. specific features

Parts derived from
training a binary
classifier.

In both cases ~100% detection rate with 0 false alarms

Parts derived from training
a joint classifier with 20 more
objects.

Multi-view object detection
train for object and orientation

View
invariant
features

View
specific
features

Sharing features is a natural approach to view-invariant object detection.

Multi-view object detection Summary
• Feature sharing essential for scaling up object

detection to many objects and viewpoints.
• Joint boosting generalizes boosting.
• The shared features

– generalize better,
– allow learning from fewer examples,
– with fewer features.

• A novel class will lead to re-training of previous
classes

