Incremental Learning of Object Detectors Using a Visual Shape Alphabet

A. Opelt, A. Pinz & A. Zisserman *CVPR '06*

Presented by Medha Bhargava*

* Several slides adapted from authors' presentation, CVPR '06

OUTLINE

- Motivation, Goals & Overview of the approach
- Learning the model

Stage 1: the visual alphabet of shape Stage 2: jointly/incrementally learned detectors

• Detection

- Invariances (scale, rotation, viewpoint)
- Experiments and Results
- Summary

MOTIVATION

Class: **Bicycle**

Class: Person

MOTIVATION

Classification + Localization + rough Segmentation

Proposed approach uses

Alphabet of Shape

GOALS

- Object detection
- Localization and crude segmentation
- Learning new models from previously trained detectors
 - Incremental learning
 - Sharing of model features

....underlying theme

Sublinear learning complexity

NEW CONCEPTS

- Boundary fragment based shape alphabet
 - Incremental joint-AdaBoost algorithm

BOUNDARY-FRAGMENT-MODEL 1/2

- Learning the BFM
- Training set
 - Object delineated by bounding box
 - 20 images/class
- Validation set
 - Labeled as +ve/-ve image
 - Object centroid marked
 - 50 images/class -- 25 +ve, 25 -ve
- A candidate boundary fragment <u>MUST</u>
 - match edge chains in +ve set
 - have good localization of the centroid in +ve set

BOUNDARY-FRAGMENT-MODEL 2/2

• Scoring a Boundary Fragment

$$C(\gamma_{i}) = c_{match}(\gamma_{i}) c_{loc}(\gamma_{i})$$

- $c_{match}(\gamma_i)$: Ratio of cumulative Chamfer matching costs of fragment to edge chains in validation images

$$c_{match}(\gamma_{i}) = \frac{\sum_{i=1}^{L^{+}} distance(\gamma_{i}, V_{i}^{+})/L^{+}}{\sum_{i=1}^{L^{-}} distance(\gamma_{i}, V_{i}^{-})/L^{-}}$$

- $c_{loc}(\gamma_i)$: pixel distance between true centroid and predicted centroid, averaged over +ve validation set

OVERVIEW OF THE APPROACH 1/2

The Boundary-Fragment-Model

first proposed in Opelt, Pinz and Zisserman ECCV 2006

Geometric model related to Leibe, Leonardis and Schiele (Workshop at ECCV 2004)

Similar model proposed by Shotton et al. (ICCV 2005)

Segmentation / Detection Backprojected Maximum

More categories \rightarrow

Two possibilities: Learning JOINTLY or INCREMENTALLY

OVERVIEW OF THE APPROACH 2/2

STAGE 1: THE VISUAL ALPHABET OF SHAPE 1/3

STAGE 1: THE VISUAL ALPHABET OF SHAPE 1/3

For each class Ci

For i=1:N trials

- 1. Grow candidate fragment in training images around random starting point i
- Evaluate the fragment at each step on the validation set of the category
 → calculate costs
- 3. If the fragments costs are above a certain threshold discard this fragment, otherwise go on with step 4.

Validation set for the category: Cow

STAGE 1: THE VISUAL ALPHABET OF SHAPE 2/3

For each class Ci

For i=1:N trials

- 1. ...
- 2. ...
- 3. ...
- 4. Evaluate the boundary fragment on the validation sets of the other categories.
- 5. Add this fragment with costs on all categories and the geometric information to the alphabet

Update centroid vectors

STAGE 1: THE VISUAL ALPHABET OF SHAPE 3/3

Clustering shape

INCREMENTAL LEARNING

Enlarging the alphabet codebook

- 1. Add more boundary fragments
- 2. Allow a single fragment to vote for additional object centroids

Sharing to build

- 1. If fragments from different categories match, update centroid info
- 2. Evaluation of fragment on -ve validation set
- 3. Granting additional voting privileges

EXAMPLE OF SHARING

Benefit: One class/aspect can build on what has been learnt from another

STAGE 2: WEAK DETECTOR CANDIDATES

STAGE 2: INCREMENTALLY LEARNED DETECTORS

DETECTION FOR THE MULTICLASS CASE

INVARIANCES

- **Translation** \rightarrow Mode search in the Hough voting space
- In-plane Rotation \rightarrow Hough voting with oriented model
- Scale invariance \rightarrow 3D-Balloon-Meanshift-Mode-Est.
- Viewpoint \rightarrow

EXPERIMENTS

MULTICLASS DATASET

17: Cup

RESULTS 1/6

Similarities at the alphabet level

RESULTS 2/6

Incremental vs. Joint-Boosting

RESULTS 3/6

Sharing of weak detectors

RESULTS 4/6

Examples of detection results

RESULTS 5/6

Examples of detection results

RESULTS 6/6

Detecion results: Independent learning, Joint learning, one-class, multi-class

29

SUMMARY

- Shape and geometry for categorization and detection
- Shared over categories (and aspects)
- Required number of weak detectors grows sublinearly with the number of categories
- Alphabet and the detector can be updated incrementally
- Joint learning gives better results with the same amount of training data

THANK YOU!

