Multiscale Conditional Random Fields for Image Labeling
Xuming He, Richard S. Zemel, and Miguel Á. Carreira-Perpiñán

Presented by: Andrew F. Dreher
CS 395T - Spring 2007

Contributions
1) Generalization of conditional random fields (CRF) to multiscale conditional random fields (mCRF)
2) Learning features of the random field at multiple scales

Motivation
1) Segment and recognize each part by class
 Useful for database queries
2) Retain contextual information
 a) Local regions have ambiguity; using neighboring regions can aid in accurate labeling
 b) Limited geometric relationships
 Fish in water; airplanes in sky
 Sky at top of image; water at bottom

Differences from Earlier Methods
1) Discriminative, not generative
2) Uses multiple scales
 a) Locality is a major problem for Markov random fields
 b) Limitedly solved by Hierarchical Markov random fields
3) Does not require joint probabilities

Conditional Random Field
1) Probabilistic framework for labeling, parsing, or segmenting structured data
2) Uses a conditional distribution over label sequences given an observation sequence, not the joint distribution over label and observation sequences.

More: Hanna M. Wallach (http://www.inference.phy.cam.ac.uk/hmw26/crf/)
Conditional Random Field

- \(Y_1, Y_2, Y_3, \ldots, Y_{n-1}, Y_n \)
- Labels
- Observation Sequences

Restricted Boltzmann Machine

1) Type of simulated annealing stochastic recurrent neural network
 - Invented by G. Hinton and T. Sejnowski
2) Does not allow connections between hidden nodes
3) Can be organized into multiple layers
 - Example: Handwritten digit recognition

Restricted Boltzmann Machine

Hidden Variables
Label Nodes

Multiscale Conditional Random Fields

Local Features

1) Classify site using a statistical classifier
2) Limited performance due to noise, class overlap, etc.
3) This looks much like the standard conditional random field diagram

Regional Features

1) Represent geometric relationships between objects
 - Corners
 - Edges
 - T-Junctions
2) Separate hidden variables; shared conditional probability table with other regions
Regional Features

- Regional Feature
- Feature Variable
- Label Field

Global Features

1) Either whole image or large local patches
2) Like region, specifies a joint distribution over the labels given the hidden variables
3) Specifies a multinomial distribution over each label node by their parameters

Example

- Rhino / Hippo
- Polar Bear
- Water
- Snow
- Vegetation
- Ground
- Sky

Combining Components

1) Probability distributions are combined multiplicatively
2) Many unconfident, but similar predictions, can yield a confident prediction
3) Should behave like a cascade; components should focus on aspects where previous components fail
Image Labeling

1) Given a new image, what is the optimal label configuration?
2) Paper uses maximal posterior marginals
 Minimizes the expected number of mislabeled sites
3) Alternative: maximum a posteriori
 Difficult to compute for high dimensional and discrete domains

Data Sets

1) Corel images of African and Arctic Wildlife
 100 images (60 training / 40 test)
 Image size: 180 x 120 pixels
2) Sowerby Image of British Aerospace
 Color scenes of rural & suburban roads
 104 images (60 training / 44 test)
 Image size: 96 x 64 pixels

Image Statistics (X_i)

30 image statistics per pixel
1) Color: CIE colorspace
2) Edge & Texture
 a) Difference-of-Gaussian (3 scales)
 b) Quadrature pairs of even-symmetric and odd-symmetric filters (3 scales; 4 orientations)
 Orientations: 0, $\pi/4$, $\pi/2$, $3\pi/4$

Performance Evaluation

1) Compare against generative method
 (Markov random field)
Corel Dataset
1) Local features: 3-layer multilayer perceptron with 80 hidden nodes
2) Regional features: 8x8 patch; 30 total
3) Global features: 18x12 patch; 15 total

Sowerby Dataset
1) Local features: 3-layer multilayer perceptron with 50 hidden nodes
2) Regional features: 6x4 patch; 20 total
3) Global features: 8x8 patch; 10 total

Classification Rates
<table>
<thead>
<tr>
<th>Method</th>
<th>Corel Rate</th>
<th>Sowerby Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Published</td>
<td>90.7%</td>
<td>89.5%</td>
</tr>
<tr>
<td>mCRF</td>
<td>82.4%</td>
<td>80.0%</td>
</tr>
<tr>
<td>MLP</td>
<td>66.2%</td>
<td>66.9%</td>
</tr>
</tbody>
</table>

Corel Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>Rhino/ Hippo</th>
<th>Polar Bear</th>
<th>Water</th>
<th>Snow</th>
<th>Vegetation</th>
<th>Ground</th>
<th>Sky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhino/ Hippo</td>
<td>9.27</td>
<td>0.14</td>
<td>0.53</td>
<td>0.01</td>
<td>1.01</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Polar Bear</td>
<td>0.08</td>
<td>8.06</td>
<td>0.01</td>
<td>0.52</td>
<td>0.12</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>Water</td>
<td>0.33</td>
<td>0.00</td>
<td>12.87</td>
<td>0.00</td>
<td>0.42</td>
<td>0.76</td>
<td>0.05</td>
</tr>
<tr>
<td>Snow</td>
<td>0.00</td>
<td>0.82</td>
<td>0.00</td>
<td>12.83</td>
<td>0.23</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>Vegetation</td>
<td>0.95</td>
<td>0.55</td>
<td>0.09</td>
<td>3.18</td>
<td>15.06</td>
<td>2.99</td>
<td>0.06</td>
</tr>
<tr>
<td>Ground</td>
<td>1.13</td>
<td>1.18</td>
<td>1.11</td>
<td>0.26</td>
<td>1.56</td>
<td>21.19</td>
<td>0.00</td>
</tr>
<tr>
<td>Sky</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19</td>
<td>0.01</td>
<td>0.66</td>
<td></td>
</tr>
</tbody>
</table>

Sowerby Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>Sky</th>
<th>Vegetation</th>
<th>Road Markings</th>
<th>Road Surface</th>
<th>Building</th>
<th>Street Objects</th>
<th>Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky</td>
<td>12.01</td>
<td>0.53</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Vegetation</td>
<td>0.83</td>
<td>33.39</td>
<td>0.01</td>
<td>1.41</td>
<td>2.71</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>Road Markings</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Road Surface</td>
<td>0.01</td>
<td>0.94</td>
<td>0.02</td>
<td>40.33</td>
<td>0.10</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Building</td>
<td>0.06</td>
<td>2.60</td>
<td>0.02</td>
<td>0.30</td>
<td>3.05</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Street Objects</td>
<td>0.02</td>
<td>0.25</td>
<td>0.00</td>
<td>0.03</td>
<td>0.12</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Cars</td>
<td>0.02</td>
<td>0.27</td>
<td>0.00</td>
<td>0.24</td>
<td>0.00</td>
<td>0.14</td>
<td></td>
</tr>
</tbody>
</table>

Pictorial Results
Thank You