

Overview (1)

 Goal: A working system for pedestrian detection onboard a moving vehicle

- Difficulties:
 - 1) highly cluttered BG
 - 2) wide range of object appearances
 - 3) appear rather small in low-resolution images
- 4) cameras are on a moving platform
- 5) hard real-time requirements for vehicle application

Chamfer Matching – Chamfer DT (2)

- Definition
 - converts a binary image into a intensity image
 - each pixel value denotes the Euclidean distance to the nearest feature pixel
- Properties
 - distance transform is a global transformation
- the distance can be approximated using integer arithmetic in raster-scan faction

Conclusions

- Advantages coarse-to-fine approach: WxHxK → reduce WxH, reduce K
- Problems
 - depends on reasonable segmentation
 - effective at limited scales
 - partial occluded pedestrian, night scenes
- Improvements
 - multi-modal shape tracker
 - SVM

References

- DM Gavrila, "Pedestrian detection from a moving vehicle," Proc. 6th European Conf. on Computer Vision, 2000
- U. Kressel, F. Lindner, C. W^oohler, and A. Linz. "Hypothesis verification based on classification at unequal error rates," Proc. of ICANN, 1999
- C. Papageorgiou and T. Poggio. "A pattern classification approach to dynamical object detection," Proc. of the International Conference on Computer Vision, Kerkyra, Greece, 1999