Image Retrieval and Classification using Local Distance Functions

Pushkala Iyer
03/22/2007

Introduction

• The Problem
 Visual Categorization

• The Solution
 Application of combined local distance functions

General Discriminative Approach

• Identify interest points
• Select a patch around interest point
• Compute fixed length feature vector (set)
• Define a function which can compare the similarity between 2 such sets
• Feed distances to a learning algorithm (SVM, Nearest neighbor classifier)

Approach

• Metric learning
• Relative importance of features is useful
• Distance function for each exemplar, thus learning a weighting over features
• Advantages
• Output of learning is a quantitative measure of relative importance
• Ability to combine and select features of different types

Distance functions and Learning Procedure

• Abstract Patch based image features
• N training images => N learning problems
• Concepts: Focal image \(F \), Learning set Candidate Image \(I \)
• Distance function is a combination of elementary patch based distances.
• \(M \) patches => \(M \) patch-to-image distances \(d_F^j(I) \) to compute between \(F \) and \(I \)
• \(D(F, I) = \sum_{j=1}^{M} w_F^j \cdot d_F^j(I) \)
Learning

- Triplets of images – \((F, I_d, I_s)\)
- Ideally, using the learned distance function, we want
 \(D(F, I_d) > D(F, I_s)\)
- \(\langle w^F \cdot d^F(I_d) \rangle > \langle w^F \cdot d^F(I_s) \rangle\)
- If \(x_i = d^F(I_d) - d^F(I_s)\), then \(\langle w^F \cdot x_i \rangle > 0\)
- For a given focal image, \(T\) triplets are chosen
- Maximal-margin formulation allowing slack for triplets that do not meet condition, while minimizing total slack

\[
\begin{align*}
\min_{w^F, \xi} & \frac{1}{2} \| w^F \|^2 + C \sum_{i=1}^{T} \xi_i \\
\text{s.t.} & \forall i \text{ in the set of triplets, } \langle w^F \cdot x_i \rangle > 1 - \xi_i, \xi_i > 0
\end{align*}
\]

Visual Features and Elementary Distances

- Different kinds of features can be combined – shape features at 2 scales, color feature.
- Filter based patch features – geometric blur descriptors over SIFT
- Two scales of geometric blur features – patch radii - larger 72 pixels, smaller 42 pixels
- 4 oriented channels, 51 sample points = 204 dimensions
- Color features – histograms of 8 pixel radius patches
- Only features of the same type are compared.

Applications

- Image Browsing – navigating image space by visual similarity
- Image Retrieval – given a new image, return a listing of the top \(K\) training images that are similar
- Image Classification – run retrieval to assign probabilities to each training image, assign the image to the class with the largest total probability.

Experiments

- Caltech101 Dataset – 101 different categories, median 50 images per class

Training Data

- Images resized to 200 x 300
- 3 types of feature, 400 of each type = 1200 features per image
- Triplet choice – uses category labels
- For each \(M\) elementary patch distance measure, find top \(K\) closest images.
- 3 cases as to what is contained in the \(K\) images set \((K=5)\)
- Both in and out of class images
- Only In class images
- Only out of class images
- Final set of triplets for focal image is the union of triplets chosen by the \(M\) measures (average 2210 triplets)
Results

- Experiments run with all features, different number of training images per category (5, 15, 30)
- 10 random splits of data into training and test images.
- Average of the mean recognition rate across splits, and standard deviation reported.
- Best value of C (.1), but recognition robust to changes in C value.
- Recognition rates
 - Color only – poorest – 6% + 0.8%
 - Big geometric blur features – moderate – 49.6% + 1.9%
 - Small geometric blur features – better – 52.1% + 0.8%
 - Combined shape – 58.8% + 2.0%
 - Combined color, shape – 60.3% + 0.7%
- Performance variations – combining shape and color

Summary

- Relative importance of features can be measured
- Different types of features can be combined
- Shows that the distance metric learning generalization (Schultz and Joachims) is more widely applicable
- Weight vectors are usually sparse (69% are 0) – reduces feature comparisons at test time.
- After comparisons, processing time for computing linear combinations and scoring is negligible – over KNN-SVM of Zhang
- 9 out of 10 worst categories were animal categories
- One possible enhancement – make use of geometric relationships between features in experiments

Blobworld

- Past Research project at UC Berkeley
- System for content based image retrieval
- Segments every image into objects they contain, allowing users to query for photographs based on objects