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Scale and Affine Invariant Interest Point 
Detectors

Krystian Mikolajczyk and Cordelia Schmid

** Sources: Schmid (CVPR’03), Tuytelaars (ECCV’06).
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Why Local Features?

{ Robust to noise, occlusion and clutter.

{ Distinctive and repeatable.

{ No explicit segmentation required – represent 
objects (classes).

{ Invariance to image transformations + robust to 
illumination changes.

{ Applications: SLAM, object (class) recognition, 
matching…
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Some keywords…

{ Harris corner detector.
z Scale sensitive…

{ Difference-of-Gaussian (DoG).
z Lowe’s paper: approx. to normalized LoG.

{ Laplacian-of-Gaussian (LoG).
z Normalized => Extrema in scale-space.

{ Related to second moment matrix (SMM): second-
order derivates of kernel-convolved image.
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The scale-adapted SMM

{ Terms: differentiation scale, integration scale, 
based on variance of kernel.

{ Ref: Elimination of edge responses in Lowe’s paper 
using eigen values…
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Characteristic Scale – scale invariance

{ Apply local operator at scales: scale where operator 
best matches local structure.

{ LoG better than scale-adapted Harris.
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Characteristic scale selection

{ Multi-scale Harris.

{ Characteristic 
scale with 
Laplacian.
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Scale invariant feature selection

{ Harris-Laplace (HL) detector:
z Harris measure, 8-neighborhood IP – larger scale 

ratio.
z Iterate using LoG until convergence – smaller 

scale ratio.

{ Simplified HL:
z Reduce scale diff, find IP, keep those with LoG 

extremum.

{ Simplified HL almost as good as HL.
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Affine transforms – why?

{ Viewpoint changes ~ affine transform.
{ Scale changes by different amounts.
{ Harris, HL not affine invariant.
{ Operate in affine Gaussian scale-space: ellipses as 

point neighborhoods.

detected scale invariant 
region

projected region
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Affine Invariance – linear algebra 101 ☺

{ Basis: Anisotropy is affine-transformed isotropy. 
High-dim search space.

{ Constraints on    of Gaussian kernels: 
z recover affine shape, 
z reduce to orthogonal transform in normalized frames.

{ Patterns in normalized frames are isotropic with 
respect to SMM.

{ Estimation of           - iterative algorithm.
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Affine Invariance – a picture
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Affine Invariance – how?

{ Step 1: Detect presence of affine 
transformation.

{ Step 2: Transform IPs to normalized 
frames, get to circular point neighborhoods, 
achieve affine invariance…
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Affine Transformation detection

{ Eigen values – yes, again!
{ Ratio of eigen values of SMM: eigen values equal=> 

isotropy.

{ Once more, a measure of the skew/stretch.

{ Ref: Lowe’s feature rejection based on the r-factor.
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Algorithm (         ) – iterate until convergence

{ Shape adaptation – normalize window using a 
function of SMM.

{ Select      - remember characteristic scale.

{ Select      - equalize eigen values.

{ Spatial localization of IP (interest point) – Harris 
detectors.

{ Compute SMM and update normalization matrix.
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{ Iterative estimation of localization, scale, 
neighborhood

Iteration #1

Affine invariant Harris points 
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{ Iterative estimation of localization, scale, 
neighborhood

Iteration #2

Affine invariant Harris points
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{ Iterative estimation of localization, scale, 
neighborhood

Iteration #3, #4, ...

Affine invariant Harris points
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Affine invariant Harris points

Harris-Laplaceaffine Harris
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Notes

{ Convergence based on reasonable choice of scales 
and initial estimates.
z Initial estimates of IPs not affine invariant.

{ Averaging of similar features.
{ Only (20-30)% of initial IPs used.
{ Repeatability criterion.

{ More robust to large viewpoint changes.

{ Smallest number of features found.
{ Largest time complexity.
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Descriptors and Matching

{ Normalized Gaussian gradient descriptors – weak!
z Cause of matching failure – use SIFT descriptors (ref: 

Moreels + Perona evaluation)…

{ Matching based on Mahalanobis distance and filters.

{ Comparable performance under scale changes and 
localization errors.

{ Performance much better under significant viewpoint 
changes.

{ Next, some ‘lab made’ image results ☺
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33 correct matches

Matches – HarAff, large change in viewpoint
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Matches – SIFT, large change in viewpoint

12 correct matches – hmm...
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Images – difference in feature selection…
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Images – difference in feature selection…
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Some SIFT matching – good…
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SIFT Matching – not so good…
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SIFT Matching – not so good…
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SIFT Matching – not so good…
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SIFT Matching – not so good…
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Some other methods – MSER
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Some other methods – IBR



6

31

Observations…

{ Local features intuitively appealing – a lot of open 
questions still.

{ Scale, rotation, affine invariance, robust to 
viewpoint and illumination changes.

{ Depend on texture in images – absence of texture 
can make it unreliable.

{ Can add other features – Color? Texture? Structure?

{ Can combine with feature-learning approaches?
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That’s all folks ☺


