Scalable Recognition with a Vocabulary Tree

by: David Nistér Henrik Stewénius

presented by: William Malpica

CS 395T Some slides from N

Some slides from Nister and Stewenius's CVPR 2006 presentation

Outline

- Abstract
- Strengths
- System Overview
- Animated explanation of the vocabulary tree
- Explanation of the scoring scheme
- Testing Results
- Conclusion

Scalable Recognition with a Vocabulary Tree

- The paper describes a system which can recognize objects from a very large database with great speed and recognition quality.
- The system uses local region descriptors which are hierarchically quantized in a vocabulary tree.

Strengths!

 The vocabulary tree directly defines the quantization.

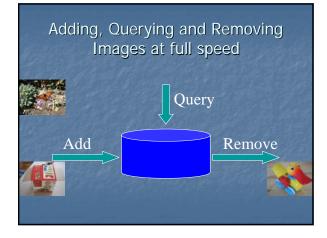
 Each high-dimension feature vector is quantized into an integer which corresponds to a path in the vocabulary tree.

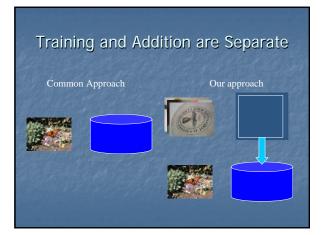
Results in speed

- Feature extraction on a 640x480 video frame in 0.2 sec, and database query in 25ms on a 50000 image database.
- Results in compactness

Strengths!

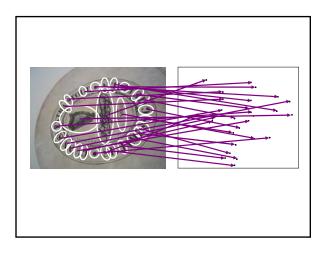
- Potential for on-the-fly insertion
 - An offline unsupervised training stage is necessary to create the vocabulary, but new images can be added to the database on-thefly.
 - Images can be added an the same rate as feature extraction.
 - Excellent benefit for large scalable image databases.

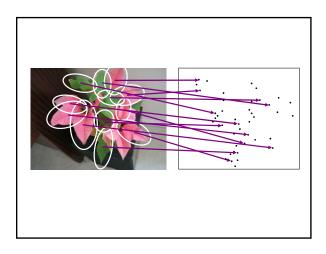


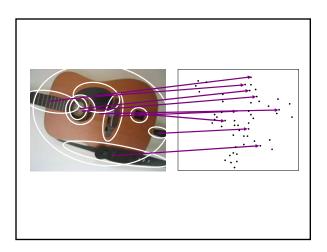


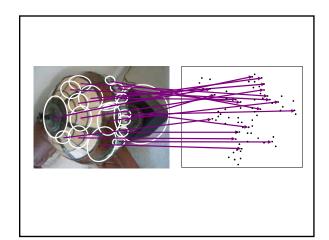
System Overview

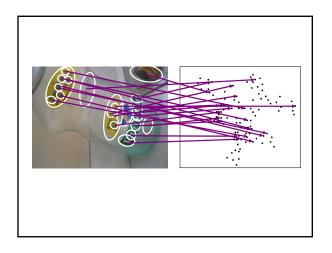
- Maximally Stable Extremal Regions (MSERs) feature extractor.
- SIFT feature descriptor
- Feature space is quantized through kmeans clustering and build into a vocabulary tree.
- To retrieve images, a hierarchical scoring scheme is used based on Term Frequency Inverse Document Frequency (TF-IDF).

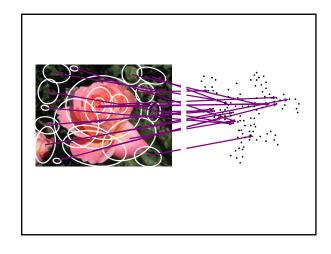


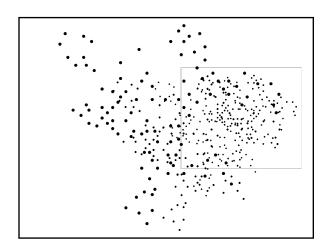


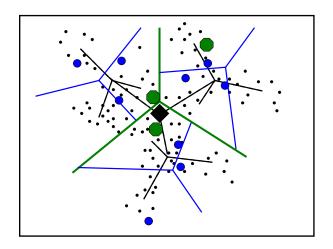


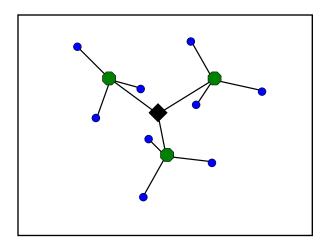


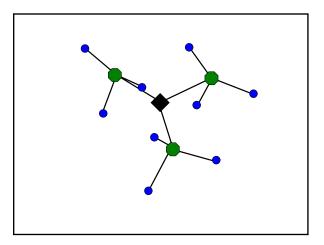


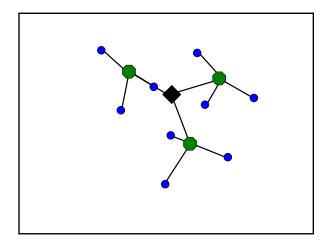


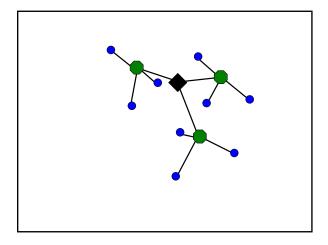


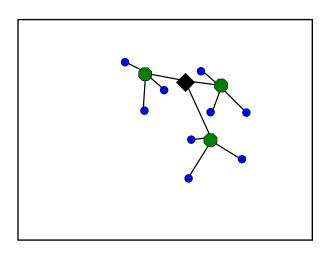


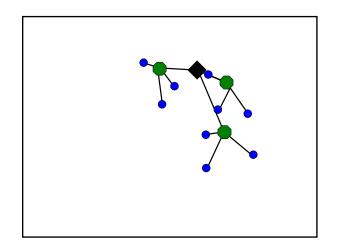


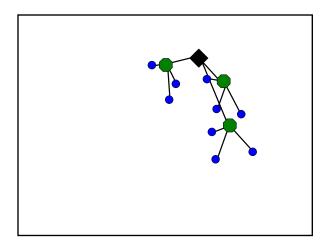


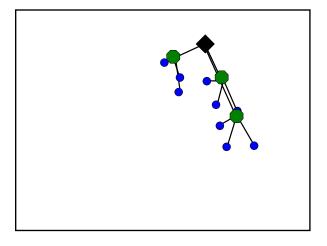


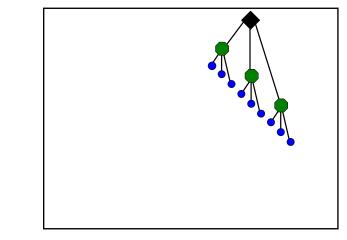


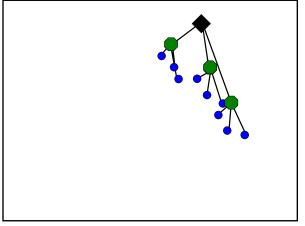


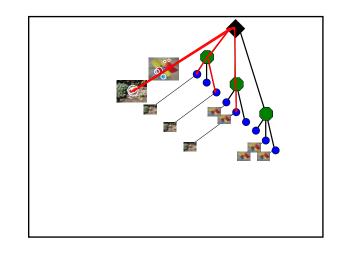


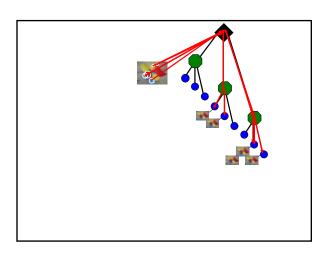


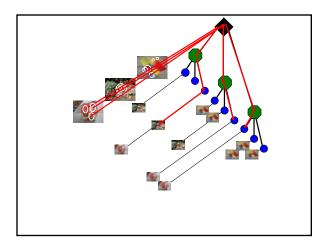


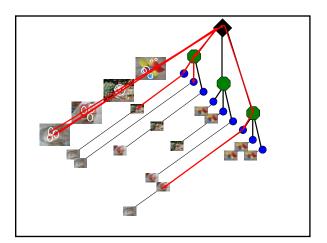


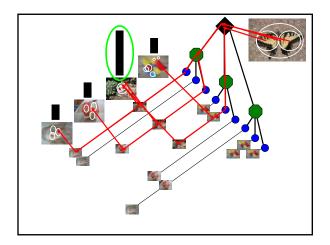


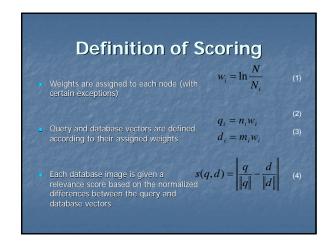










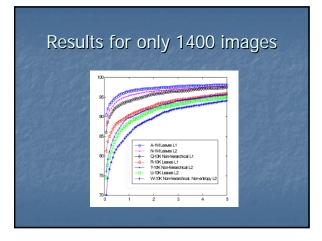


Implementation of Scoring

- Every node is associated with an inverted file, although only leaf nodes are explicitly represented. Inner nodes are a concatenation of the leaf nodes.
- Inverted files store the id-numbers of the images in which a particular node occurs, and the term frequency for that image.
- The vectors representing the database images as well as the query images are normalized to unit magnitude.

Normalization

• To compute the normalized difference in Lpnorm: (5) $\|\mathbf{q} - \mathbf{d}\|_{p}^{p} = \sum_{i} |q_{i} - d_{i}|^{p}$ $\|\mathbf{q} - \mathbf{d}\|_{p}^{p} = 2 + \sum_{i|q_{i}\neq0,d_{i}\neq0} (|q_{i} - d_{i}|^{p} - |q_{i}|^{p} - |d_{i}|^{p})$ (6) • For the case of the L2-norm: $\|\mathbf{q} - \mathbf{d}\|_{2}^{2} = 2 - 2 \sum_{i|q_{i}\neq0,d_{i}\neq0} q_{i}d_{i}$ (7)

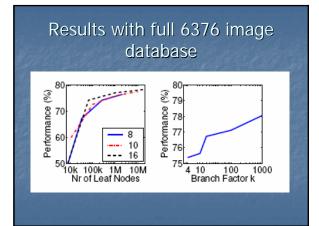


Results for on	y 1400 images
----------------	---------------

Me	En	No	S%	Voc-Tree	Le	Eb	Perf
A	y/y	L1	0	6x10=1M	1	ir	90.6
В	y/y	L1	0	6x10=1M	1	vr	90.6
С	y/y	L1	0	6x10=1M	2	ir	90.4
D	n/y	L1	0	6x10=1M	2	ir	90.4
Е	y/n	L1	0	6x10=1M	2	ir	90.4
F	n/n	L1	0	6x10=1M	2	ir	90.4
G	n/n	L1	0	6x10=1M	1	ir	90.2
Н	y/y	L1	m2	6x10=1M	1	ir	90.0
Ι	y/y	L1	0	6x10=1M	3	ir	89.9
J	y/y	L1	0	6x10=1M	4	ir	89.9
Κ	y/y	L1	0	6x10=1M	2	vr	89.8

Results for only 1400 images

L	y/y	L1	0	6x10=1M	2	ip	89.0
М	y/y	L1	m5	6x10=1M	1	ir	89.1
Ν	y/y	L2	0	6x10=1M	1	ir	87.9
0	y/y	L2	0	6x10=1M	2	ir	86.6
Р	y/y	L1	110	6x10=1M	2	ir	86.5
Q	y/y	L1	0	1x10K=10K	1	-	86.0
R	y/y	L1	0	4x10=10K	2	ir	81.3
S	y/y	L1	0	4x10=10K	1	ir	80.9
Т	y/y	L2	0	1x10K=10K	1	-	76.0
U	y/y	L2	0	4x10=10K	1	ir	74.4
V	y/y	L2	0	4x10=10K	2	ir	72.5
W	n/n	L2	0	1x10K=10K	1	-	70.1

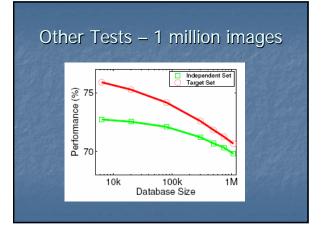


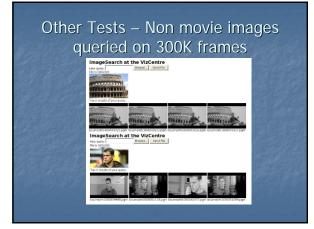
Other Tests – 40000 CD covers

 Method was tested on a database of 40000 CD covers running realtime

Other Tests – 1 million images

- Method was also tested on a database of 1 million images. The ground truth images were embedded into a database containing all the frames from several movies: The Bourne Identity, The Matrix, Braveheart, Collateral, Resident Evil, Almost Famous and Monsters Inc
- Queries on a 8GB machine would take about 1 second. Database creation took 2.5 days.





Conclusion

- This methodology provides the ability to make fast searches on extremely large databases.
- Paves the way to someday create an internet-scale content based image search engine.

