
1

Efficient Matching of Pictorial
Structures

01/30/2007
Pushkala Iyer

Pictorial Structures

“Collection of parts arranged in
a deformable configuration”
Local appearance

– Part models
– Parts ≠ feature detection

Global geometry
– Not necessarily fully connected

graph
Joint optimization

– Combine appearance
and geometry without
hard constraints

“Stretch and fit”
Qualitative

Sparse representation
+ Computationally tractable (105 pixels 101 -- 102 parts)
+ Generative representation of class
+ Avoid modeling global variability
+ Success in specific object recognition

- Throw away most image information
- Parts need to be distinctive to separate from other classes

History of related work

Fischler and Elschlager original 1973 paper
Burl, Weber and Perona ECCV 1998

– Probabilistic formulation
– Full joint Gaussian spatial model
– Computational challenges led to feature-based

Felzenszwalb and Huttenlocher CVPR 2000
– Explicit revisiting of FE73 for trees
– Probabilistic MAP estimates
– Efficient algorithms using distance transforms

The Matching Problem

Find the best placement of parts in an image
– How well does each part match the image ?
– How well do all they all fit together ?

Minimize a certain energy function

Matching Problem

2

The Solution Approach

Pictorial Structure model [EF73]
Restrictions on relationships

– Tree structure
– Natural skeletal structure of many animate objects
– Dynamic programming

Pairwise relationships
– Broad range of objects
– Generalized Distance Transforms

Globally best match of generic objects
FH2000 vs other approaches

– Perona et al – central coordinate system, limited to one articulation point.
– No hard decisions.
– Valid configurations are not treated as being equally good.

Recognition Framework Model

Graph Model G = (V, E)
– Parts are the vertices V = {v1, v2, … vn}
– If vi, vj are connected, then (vi, vj) є E.

Instance of a part in an image specified by location l.
– Position, Rotation, Scale for 2D parts.

Match cost function mi(I, l) measures how well the
part matches the image I when placed at location l.
Deformation cost function dij(li, lj) for every edge (vi,
vj) measures how well the locations li of vi and lj of vj
agree with the object model.

Model Framework

A configuration L = (l1, l2, …,ln) specifies a
location for each of the parts vi in V w.r.t the
image.
Best configuration is the configuration that
minimizes the total cost: match cost of
individual parts + pair wise cost of the
connected pairs of parts.
L* = arg minL (∑(vi,vj) є E dij (li,lj) + ∑vi є V mi(I,li))

Problem reduction

Minimization of L* = arg min L (∑(vi,vj) є E dij (li,lj) + ∑vi є V mi(I,li)) is
O(mn)

– Where m is the number of discrete values for each li and n is the
number of vertices in the graph.

– Markov Random Fields, Dynamic Contour Models (snakes).
Restricted graphs reduce time complexity

– For first order snakes (chain) reduces to O(m2n) from O(mn)
– Dynamic programming - is a method of solving problems exhibiting

the properties of overlapping subproblems and optimal
substructure in a way better than naïve methods.(Wikipedia)

– Memoization and bottom-up approach.
– Tree structured graphs enable similar reduction to be achieved.

Problem Reduction

O(m2n) algorithm is not practical – large number of possible locations
for each part.
Restriction on pairwise cost function dij yields a minimization algorithm
that is O(mn).
dij (li,lj) = || Tij(li) – Tji(lj) ||

– dij measures the degree of deformation.
– Is restricted to be a Norm.
– A norm is a function which assigns a positive length or size to all vectors in

a vector space, other than the zero vector. (wikipedia)
– Tij and Tji should be invertible, together capture the ideal relative

configurations of parts vi and vj.
– Tij(li) = Tji(lj) => li and lj are ideal locations for vi and vj
– Tji(lj) should be discretized in a grid.

Efficient Minimization

Dynamic programming to find the
configuration L* = (l1*, ….ln*) that minimizes
the cost.
Computation involves n-1 functions, each of
which specifying the best location of one part
w.r.t the possible locations of another part.

3

Efficient Minimization

The best location of a leaf node vj (6)
can be computed as a function of the
location of just its parent vi (5).
Only contribution of lj to the energy is
dij(li,lj) + mj(I,lj) – the contribution of
the edge (5,6) and the position of 6.
Best location of vj given location li of
vi is

Bj(li) = min lj (dij(li,lj) + mj(I, lj))

Replacing min by argmin, we get the
best location of vj as a function of the
location li of its parent vi.

Efficient Minimization

For non leaf vertices vj ≠ vr, if Bc(lj)
is known for every child vc є of Cj,
then the best location of vj given its
parent vi is

Bj(li) =
min lj (dij(li, lj) + mj(I,lj) + ∑ vc є Cj Bc(lj))

Replacing min with arg-min yeilds
the best location of vj as a function
of li.

Efficient Minimization

For the root node vr, if Bc(lr) is
known for every child vc є Cr,
then the best location of the
root is
Lr* =
arg min lr (mr(I, lr) +

∑ vc є Cr Bc(lj))

Algorithm

Recursive equations specify an algorithm.
For every leaf node, compute its best location as a function of
the location of its parent.
For every non leaf node X, compute its best location as a
function of the location of X’s parent, also taking into
consideration the cost of placing X’s children (previous step).
Repeat until the best location of the root is calculated.
Now traverse the tree starting at the root, to find the optimum
configuration.
O(nM) – n (# nodes) M (time to compute Bj(li) and B’j(li))

Distance Transforms

A distance transform, also
known as distance map or
distance field, is a
representation of a digital
image. (Wikipedia)
The map supplies each pixel of
the image with the distance to
the nearest obstacle pixel. A
most common type obstacle
pixel is a boundary pixel in a
binary image.
An example of a chessboard
distance transform on a binary
image.

Generalized Distance Transforms

DB(Z) = min w є B || z- w || where B is a subset of G
DB(Z) = min w є G (|| z- w || + 1B (w)) where 1B (w) is an indicator function for membership in
B.

Algorithm (G.Borgefors) computes this in O(mD) time for a D dimensional grid.
- Two pass, local neighborhoods of 7x7 pixels used.

Meijster, Roerdink & Hesselink:
- Generic distance transform algorithm in linear time.
- 2 Phases, first columnwise, second rowwise, each phase 2 scans.
- Per row computation independent of per column computation, can be parallelized.

Df(Z) = min w є G (|| z- w || + f(w))

How that helps:

Given dij (li,lj) = || Tij(li) – Tji(lj) ||
Bj(li) = Df(Tij(li)) where f(w) = mj(I, Tji

-1(w)) +∑ Tji
-1(w))

4

Computation

D is 4 (x, y, rotation, scale)
D[x,y,θ,s] is initialized to the values of function f(w)
D[x,y,θ,s] = min(D[x, y, θ,s],

D[x-1, y, θ, s] + kx,
D[x, y-1, θ, s] + ky,
D[x, y, θ-1, s] + kθ,
D[x, y, θ, s-1] + ks)

D[x,y,θ,s] = min(D[x, y, θ,s],
D[x+1, y, θ, s] + kx,
D[x, y+1, θ, s] + ky,
D[x, y, θ+1, s] + kθ,
D[x, y, θ, s+1] + ks)

Doesn’t consider periodic θ.
Special handling of boundary cases, additional passes.
Bj(li) computable in O(m) time.

Person Model

Flexible revolute joints.
Ideal relative orientation given by θij.
Deformation cost measures observed
deviation from ideal.
Given the observed locations li = (θi, si, xi, yi)
and lj = (θj, sj, xj, yj)
dij(li, lj) = wij

θ |(θj – θi) – θij|
+ wij

s |(log sj – log si) – log sij|
+ wij

x | x’ij – x’ji|
+ wij

y |y’ij – y’ji|
Large wij

s ,wij
x ,wij

y and Small wij
θ

Recognition Results
Car Model

Flexible prismatic joints
dij(li, lj) =
Infinity |(θj – θi)|
+ wij

s |(log sj – log si) –
log sij|

+ wij
x | x’ij – x’ji|

+ wij
y |y’ij – y’ji|

Bayesian Formulation

Best match by MAP estimation
L* = arg max L (Pr(L|I))
Applying Bayes rule,
L* = arg max L (Pr(I|L) Pr(L))
Prior information – from spring connections
Likelihood – approx product of match qualities for
individual parts.
To minimize the energy function, take the negative
logarithm:
L* = arg minL (∑(vi,vj) є E dij (li,lj) - ∑vi є V ln gi(I,li))

Summary

No decisions until the end.
– No feature detection

Quality maps or likelihoods
– No hard geometric constraints

Deformation costs or priors
Efficient algorithms.

– Dynamic programming critical
– Not applicable to all problems, need good factorizations of geometry and appearance

Good for categorical object recognition.
– Qualitative descriptions of appearance
– Factoring variability in appearance and geometry

Deals well with occlusion.
– In contrast to hard feature detection

Most applicable to 2D objects defined by relatively small number of parts.
Unclear how to extend to large number of transformation parameters per part.

– Explicit representation grows exponentially
No known way of using to index into model databases.

5

References

Efficient Matching of Pictorial Structures – Pedro F
Felzenswalb & Daniel P Huttenlocher
Representation & Matching of Pictorial Structures –
Martin A Fischler & Robert A Elschlager
Discussion of Pictorial Structures - Pedro F
Felzenswalb & Daniel P Huttenlocher
A general algorithm for computing distance
transforms in linear time – A Meijster, J B T M
Roerdink and W H Hesselink
Part Based Models – Rob Fergus
Wikipedia

