Efficient Matching of Pictorial
Structures

01/30/2007
Pushkala lyer
D

Pictorial Structures

. |
e “Collection of parts arranged in
a deformable configuration”

e Local appearance
- Part models
- Parts = feature detection
e Global geometry
- Not necessarily fully connected
graph
e Joint optimization
- Combine appearance
and geometry without
hard constraints
o “Stretch and fit"
* Qualitative

Sparse representation

+ Computationally tractable (10° pixels = 10" -- 102 parts)
+ Generative representation of class
+ Avoid modeling global variability

- Throw away most image information
- Parts need to be distinctive to separate from other classes

The Matching Problem

e Find the best placement of parts in an image
- How well does each part match the image ?
- How well do all they all fit together ?

e Minimize a certain energy function

History of related work

e Fischler and Elschlager original 1973 paper
e Burl, Weber and Perona ECCV 1998
- Probabilistic formulation
- Full joint Gaussian spatial model
- Computational challenges led to feature-based
e Felzenszwalb and Huttenlocher CVPR 2000
- Explicit revisiting of FE73 for trees
- Probabilistic MAP estimates
- Efficient algorithms using distance transforms

Matching Problem




The Solution Approach
.|

e Pictorial Structure model [EF73]

e Restrictions on relationships
- Tree structure
- Natural skeletal structure of many animate objects
- Dynamic programming

e Pairwise relationships
- Broad range of objects
- Generalized Distance Transforms

e Globally best match of generic objects

e FH2000 vs other approaches
- Perona et al — central coordinate system, limited to one articulation point.
- No hard decisions.
- Valid configurations are not treated as being equally good.

Recognition Framework Model

. |
e Graph Model G = (V, E)
- Parts are the vertices V ={v,, v,, ... v}
- Ifv, v;are connected, then (v, v)) € E.
e Instance of a part in an image specified by location I.
- Position, Rotation, Scale for 2D parts.
e Match cost function my(l, I) measures how well the
part matches the image | when placed at location I.
e Deformation cost function dy(l;, IJ) for every edge (v;,
v;) measures how well the locations |, of v; and |, of v;

ajgree with the object model.

Model Framework

G

e A configuration L = (I, I, ...,I,) specifies a
location for each of the parts v; in V w.r.t the
image.

e Best configuration is the configuration that
minimizes the total cost: match cost of
individual parts + pair wise cost of the
connected pairs of parts.

o L™ =arg ming (3 yivjee dj () + Zvievmilh)

Problem reduction

e Minimization of L* = arg min (¥ ce d (]) + ey mi(L1)) is
O(mn)
- Where m is the number of discrete values for each |;and n is the
number of vertices in the graph.
- Markov Random Fields, Dynamic Contour Models (snakes).
e Restricted graphs reduce time complexity
- For first order snakes (chain) reduces to O(m?2n) from O(mn)
— Dynamic programming - is a method of solving problems exhibiting

the properties of overlapping subproblems and optimal
substructure in a way better than naive methods.(Wikipedia)

- Memoization and bottom-up approach.
- Tree structured graphs enable similar reduction to be achieved.

Problem Reduction

e O(m?2n) algorithm is not practical — large number of possible locations
for each part.

e Restriction on pairwise cost function dij yields a minimization algorithm
that is O(mn).

i () = 11 Ty() = T5() 1l

- dj measures the degree of deformation.

- Is restricted to be a Norm.

- Anorm is a function which assigns a positive length or size to all vectors in
a vector space, other than the zero vector. (wikipedia

- Tjand T; should be invertible, together capture the ideal relative
configurations of parts v;and v;.

- Ty(l) = Ty() => l;and |;are ideal locations for v;and v;

T;(l)) should be discretized in a grid.

°
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Efficient Minimization

G
e Dynamic programming to find the
configuration L* = (I;%, ....1.,*) that minimizes
the cost.
e Computation involves n-1 functions, each of
which specifying the best location of one part
w.r.t the possible locations of another part.




Efficient Minimization
¢ ]

e The best location of a leaf node v (6)
can be computed as a function of the
location of just its parent v; (5).
. OnIy contribution of | to the energy is
1) + m(Ll) — the Contribution of = @
He édge 5, 6 and the position of 6. 1
e Best location of v, given location |, of
v, is

By(h) = min , (d;(1,1) + ml, 1))

e Replacing min by argmin, we get the
best location of v; as a function of the
location |, of its pérent Vi

Efficient Minimization

e Fornon leaf vertices v; # v,, if By(l)
is known for every child v.eof C,
then the best location of v; given its
parent v, is

By(h) =
miny (dil, ) + my(Lh) + ¥ e o Bell),

Replacing min with arg-min yeilds
the best location of v;as a function
of I,.

Efficient Minimization
< ]

e For the root node v,, if B(l,) is
known for every child v, e C,,
then the best location of the )
root is A
Lr* = \
arg min . (m(l, I,) + A

Z vce Cr Bc(lj))

Algorithm

e Recursive equations specify an algorithm.

e For every leaf node, compute its best location as a function of
the location of its parent.

e For every non leaf node X, compute its best location as a
function of the location of X's parent, also taking into
consideration the cost of placing X’s children (previous step).

e Repeat until the best location of the root is calculated.

e Now traverse the tree starting at the root, to find the optimum
configuration.

e O(nM) - n (# nodes) M (time to compute By(l; ) and B'(l;))

Distance Transforms
¢ ]

e Adistance transform, also
known as distance map or
distance field, is a
representation of a digital
image. (Wikipedia)

e The map supplies each pixel of
the image with the distance to
the nearest obstacle pixel. A
most common type obstacle
pixel is a boundary pixel in a
binary image.

e An example of a chessboard
distance transform on a binary
image.

Generalized Distance Transforms

o Dy2)=min,, gl - w|| where B is a subset of G
* De@=min, o (I 2- Wil + 15 () where 1o (w) s an indicator function for membership in

e Algorithm (G.Borgefors) computes this in O(mD) time for a D dimensional grid.
- Two pass, local neighborhoods of 7x7 pixels used.
o Meijster, Roerdink & Hesselink:
- Generic distance transform algorithm in linear time
- 2 Phases, first columnW|se second rowwise, each phase 2 scans.
- Perrow of per column can be

o D@ =min, o (2wl +f(w)
e How that helps:

o Givend, (L) = T,()-T,M) 1l
. B(l)fD(T(\))wheref(w) my(l, Tl (w)) +E Ty (w)




Computation
.|

e Dis 4 (x,y, rotation, scale)
e D[x,y,0,s] is initialized to the values of function f(w)
e D[x,y,0,s] = min(D[x, y, 8,s],
Dix-1,y, 8, s] +k,,
D[x, y-1, 6, s] + k,
D[x, y, 8-1, s] + kg,
D[x, y, 8, s-1] + k)
e D[x,y,6,s] = min(D[x, y, 6,s],
D[x+1,y, 6, s] +k,,
D[x, y+1, 8, s] + Ky,
D[x, y, 8+1, s] + kg,
D[x, y, 8, s+1] + k)
e Doesn't consider periodic 6.
Special handling of boundary cases, additional passes.
e By(l;) computable in O(m) time.

Person Model

e Flexible revolute joints.

o Ideal relative orientation given by 6;.

e Deformation cost measures observed
deviation from ideal.

e Given the observed locations |, = (8, s;, X, ;)
and |, = (8; s;, X;, ¥))

o dy(l 1) =w|(6,—6) -6

+w;s |(log s;—log s;) — log s;| ' ¥
Wy X=X
+wy |y = Vil

e Large w;s ,w*

i Wi ,wy¥ and Small w;®

Recognition Results
8

Car Model

e Flexible prismatic joints

o dy(l, )=
Infinity |(6, - 8, _—
+we |(log s~ log's) -

log s;
+wi | X=X
+ Wijy |y’\j - y‘j\l

Bayesian Formulation
e

e Best match by MAP estimation
*=arg max . (Pr(L|l))
e Applying Bayes rule,
L* =arg max _ (Pr(I|L) Pr(L))
e Prior information — from spring connections

e Likelihood — approx product of match qualities for
individual parts.

e To minimize the energy function, take the negative
logarithm:

L* = arg min, (¥ vy e e dj (1) - ZievIn gi(L1))

Summary
e —

®  No decisions until the end.
No feature detection
« Quality maps or ikelihoods
No hard geometric constraints
 Deformation costs or priors
e Efficient algorithms.
- Dynamic programming critical
- Notapplicable to all problems, need good factorizations of geometry and appearance
e Good for categorical object recognition.
- Qualitative descriptions of appearance
- Factoring variability in appearance and geometry
e Deals well with occlusion.
In contrast to hard feature detection
e Most applicable to 2D objects defined by relatively small number of parts.
e Unclear how to extend to large number of transformation parameters per part.
_ Explicit representation grows exponentially
e No known way of using to index into model databases.
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