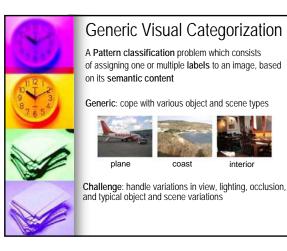
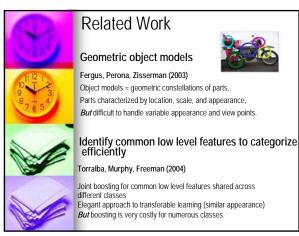


- ➢Generic Visual categorization





Related Work (2)

Use a universal vocabulary for categorization

Csurka, Dance, Fan, Willamowski and Bray (2004), Bishop and Ulusoy (2005), FeiFei and Perona (2005)

Based on analogy to text categorization Defines visual vocabulary Computes bags of key patches / visual words Categorizes these bags

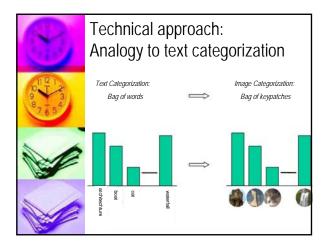
But adapted vocabularies allow for better performance

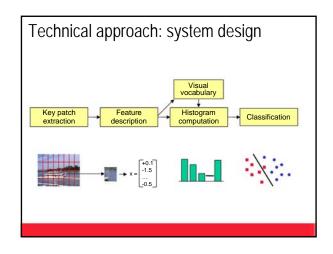
Applications

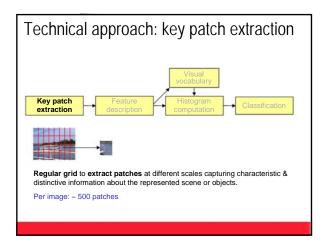
Tagging images with content: Web image retrieval

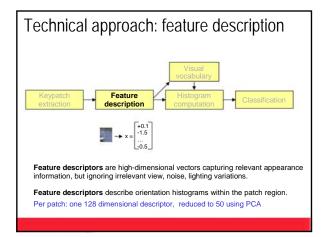
Images in documents Photographic archives Consumer photo albums

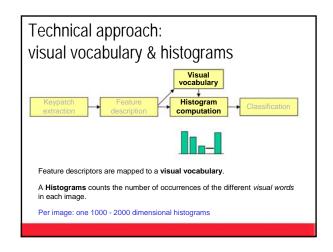
Assisting other processing: Image enhancement Image selection (illustration)

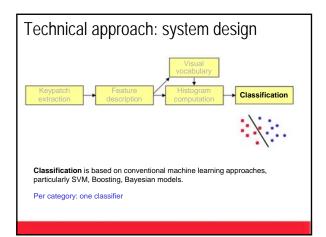


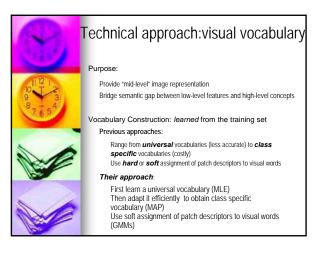


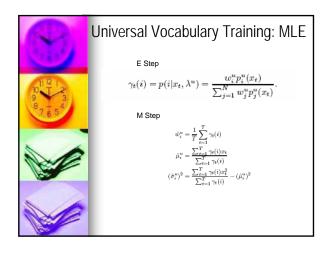


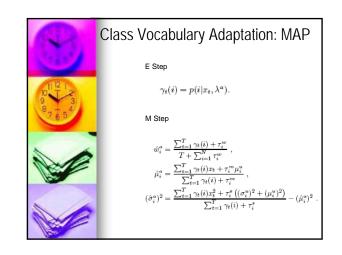


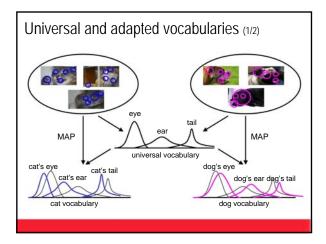


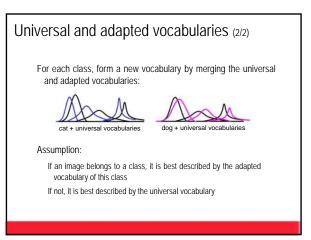


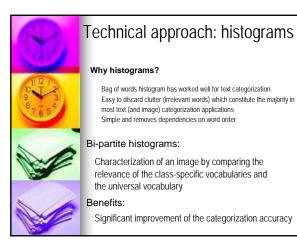


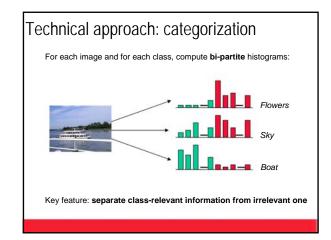


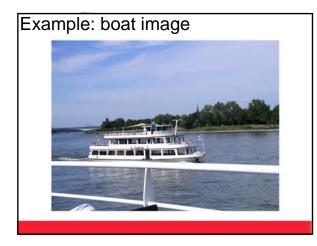


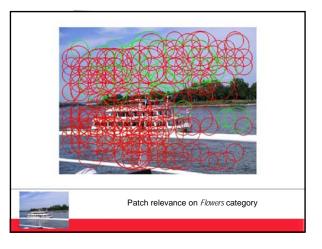


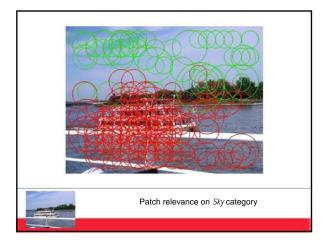


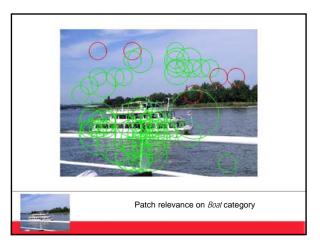












AD.	Eight category results	
Contract I	Experiment:	
098765	Train XRCE categorizer on XRCE images.	
	Test on independent user images. % correct	
	Amusement Park	92.5 %
	Boat	88.8 %
	New York City	75.5 %
	Sunrise&Sunset	90.0 %
	Surfing	69.3 %
	Tennis	93.6 %
	Underwater	88.2 %
	Waterfalls	90.3 %
	average	86.0%

Eight category results

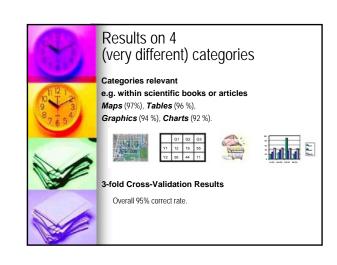
Problems:

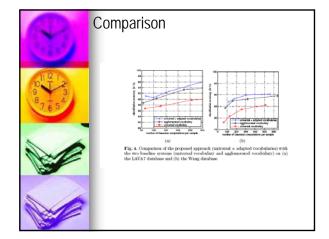
Images often rather multi- than mono-label, e.g. *Surfing* images often contain *boat*s Category concepts not always concordant difference between training and test set

27 categories results (RevealThis) Various categories relevant for Travel: AmusementPark, Animal, Archaeology, ArtsObjects, Beach, Boat, Buildings, Coast, Countryside, Desert, Face, Flowers, Interior, Map, Mountain, Painting, Persons, Plane, SkyActivity, VerrainSports, Train, Trees, Underwater, Vehicle, WaterActivity, Waterscape, WinterActivity Results obtained with 5-fold Cross-Validation on homogeneous set: Correct rale between 50% (Animal, ArtsObjects) and > 80% (Interior, Map)

and > 80% (*Interior, Map*) Overall 65% correct rate

Typical (obvious) confusions between classes: **Desert ↔ Beach, Persons ↔ Face**





Conclusion

A generic visual categorizer that:

Scales well with the number of categories added

Performs well (low error rate and run-time) on diverse generic categories without task dependent "tweaking" or manual operations with training data

Is extensibly engineered around a simple text-categorization analog

Work in Progress

Consider multi-label images Integrate color information

References

Florent Perronnin, Christopher Dance, Gabriela Csurka, and Marco Bressan (ECCV 2006) Fergus, Perona, Zisserman (2003) Torralba, Murphy, Freeman (2004) Csurka, Dance, Fan, Willamowski and Bray (2004), Bishop and Ulusoy (2005), FeiFei and Perona (2005)

Slides and material taken from

http://www.igd.fraunhofer.de/igd-a7/mir2005/Day1/04-Session2/02-Jutta-Willamowski/Jutta-Willamowski.pdf