Learning Object Categories from Google's Image Search

Fergus, Perona, Fei-Fei, Zisserman

Presented by Sudheendra

101

Introduction

Contributions

- Unsupervised learning on training set collected from Google image search and therefore unlabeled

Related work

- Discovering objects and their locations in images
- pLSA for object category recognition and segmentation
 A visual category filter for Google images
- Fergus, Perona, Zisserman
- Reranking of Google images by learning a model

- Find this topic using a validation set of less noisy data

ABS-pLSA

- Quantize the image into X bins
- Include spatial location with word to produce topic variable
- EM steps similar to pLSA
- Drawback
 - Uses absolute location of feature
 - Not translation or scale invariant

Datasets

Training

- Google dataset Images automatically downloaded from Google image search using
- Validation set first five images from image search in 7 different

- Manually gathered frames from Caltech and Pascal datasets
- Testing
 - Manually gathered frames from Caltech and Pascal datasets

Parameters

- 700 regions per image using 4 different region detectors Because the method requires large number of data for parameter estimation
- SIFT descriptor of 72 dimensions Larger histogram bins more appropriate for object categorization
- K-means clustering with k=350 to obtain 350 visual words
- Number of grid positions X_{fg} = 37
- Number of topics Z = 8

Experiments and Results

- Experiment 2 (dengerd datajasets)
 - Tailtieghimages from Google Comment in ages from Sector
 imageses(Chaining images from
 s topicaleed, best ones
 ing Google validation set
 TSI-pLSA performs better than
 the associatethods in all categories

 - except@wigfound and background ABSIpIaSearchTiShipts সমিরদে এ০t rotation INYAgadi unsupervised

 - 6 topics and best chosen using
 - performance on foreground only images
 - TSI-pLSA performs better than

Prep. 4.7 0.7

Experiments and Results

Experiment 3

- than the other methods but

Dutaset	TSI-pLSA	[10]	[18]	[15]
Expt. B	Img. labels	Ing. labels	Ing. labels	Segmented
ENSCAL Car	25.870.062			34.270.181
PASCAL Mesohike	25.7/0.249			31.770.341
Expt. C	None	Ing. labels	Ing. labels	Segmented
Airplane	15.5	7.0	11.1	
Cars Rear	16.0	9.7	8.9	6.1
Face	20.7	3.6	6.5	
Leopard	13.0	10.0		
Motorbike	6.2	6.7	78	6.0

Experiment 4

- Improving Google's Image
- Best topic from 8 topics trained on raw Google data

Conclusions

- All three methods work on unlabeled Google dataset and automatically collected validation set and TSI-pLSA performs best
- TSI-pLSA identifies multiple instances of objects in
- Can be used to rank images returned by Google
- TSI-pLSA performs badly when objects are rotated