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Summary of main points...

Goal: one-shot learning
Intuition: use general prior knowledge
Approach: full Bayesian

- Marginalize over all 6

* Implementation:
— Probability models

- Variational EM

One-Shot learning
of object categories.

Words of wisdom from statisticians
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Bayesian framework

P(object | test, train) vs tter | test, train)

I Bayes Rule

Expansion by parametrization
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Perona et al. * ‘86, ‘88, ‘00, ‘03

Agarwal & Roth



Model Structure
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model distribution: p(0)

* conjugate priors

Maximum Likelihood method
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Experiments: obtaining priors
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Learning...

Prior distr.

Miller, et al. ‘00

Variational EM

new estimate
of p(8|train)

Aftias, Hinton, Minka, etc.

Training:

1- 6 images

Random
initialization

Testing:
50 fg/ 50 bg images

(randomly drawn) object present/absent

Datasets
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Summary

m Learning categories with one example is possible
m Can reduce # of training example from ~300 to
1~5 using prior from other categories
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