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Goal

- Recognition of object categories

- Unassisted learning
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Problems

« Three problems
¥ Segmentation of training images
¥ Part selection
¥ Estimation of model parameters

->Provide framework to solve these problem
automatically

Related Work

« Hierarchical model from edge elements
« Statistical model from shape space densities
« Active appearance models

+ Gradient descent on a deformation energy
function

- Require some kinds of labeled in the
training images
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Fig. 2. Block dingram of our method. “Foreground images™ are images containing the target ob-

jects in clutiered background. “Background images™ contain background only.




Model: Constellation of Parts

Part selection |

« Interest operator by Forstner
¥ corners
¥ intersection of 2+ lines
¥ center points of circular patterns
« Vector quantization by k-means clustering
¥ Retain clusters with at least 10 patterns
« Remove patterns which are similar to others

+ Use greedy search to find the most
informative parts

Part selection |

Fig. 3. Points of interest (left) identified on a raining image of a human
ground using Fiirstner's method, Crosses denote come patterns while
type patterns. A sample of the patterns obtained using
is shown for faces (center) and cars (right). The car images were high-pass filtered before the pant
selection process. The total number of pattems selected were 81 for faces and 80 for cars,
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A generative object model |
« Assume T different types of parts

« Observable data
Xy X Xy,

X21 X22 XZ N2

X°=

XTl XTZ XTNr

+ Hidden/Missing data:
¥ Vector h=(h,, h,, ..., hy) where h; € {0,1,2,...,N}}
¥ Vector x™: positions of missing parts

A generative object model |
v+ Joint probability density: P(X%,x™,h)
« Two auxiliary variables:

¥ Binary vector b=(b,,b,, ...,bg) where b; = 1if h; >
0

¥ Vector n=(n,n,,...,n;) where n;is the number of
background candidates in row i of X°

—P(X%,x™,h) = P(X°, x™, h, n, b)
= P(X%x™h,n)p(hin,b)p(n)p(b)

A generative model |
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Part Selectlon 1

* Find regions within image

« Use Kadir and Brady's
salient region operator [I[JCV '01]

(x,y) coords. of region center

Scale

Diameter of region (pixels)

« Uses gray-scale input
« Finds maxima in entropy over scale and location
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- Normalize all the images to same size

« Representation in low-dimensional vector space, hence speeds
up computation

« Ignores noise, hence makes algorithm robust

Model 11
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Appearance Shape  Rel. Scale Other
« Appearance is highest level abstraction
* Occlusion is lowest level abstraction
« h — Hypothesis vector, mapping a feature to each part
« If h (p)=0, part p is occluded

Model 11

« Appearance
¥ Each part has Gaussian Density in Appearance Space
¥ Independent for each part
¥ Gaussian density for background
¥ Feature not in hypothesis calculated under background
density
¥ dy Olfpartga;,,f{(p Vel O = {eng. Vig)
¥ Parameters s
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Model 11

+ Shape
¥ Same as Weber et al.’s model
¥ Joint Gaussian density for foreground features
¥ Uniform density for background features
¥ Parameters: g7 = {5, ¥}

p(X|S,h, 6)

m = G(X(h)[u, X)af
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Model 11

« Relative Scale
¥ Scale with reference to a fixed frame
¥ Modeled by Gaussian density
¥ Parts assumed independent of each other
¥ Parametersascc — (1, U,}
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Model 11

+ Occlusion
¥ Same as Weber et al.’s model

¥ Number of features detected modeled using
Poisson distribution

¥ Probability table for all possible occlusion
patterns is a parameter

p(hlf) _ praiss(n|M) 1
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Classification

p(Object/X, S, A)
p(No object| X, S, A)
p(X., 5, A|Object) p(Object)
p(X.S. A[No object) p(No object)
piX.8, A|#) p(Object)
p(X. S, Alfh, ) p(No object)
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« Priors estimated using training set
« Object iff R>threshold

Learning

« Task: Estimation of model parameters
« Chicken and Egg type problem, since we initially know neither:
- Model parameters

- Assignment of regions to foreground / background

« Let the assignments be a hidden variable and use EM algorithm to
learn them and the model parameters

Generative probabilistic model

Foreground model based on Burl, Weber et al. [ECCV '98, '00]

Gaussian shape pdf Gaussian part appearance pdf Qaussian
. relative scale pdf
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Learning procedure
*Find regions & their location, scale & appearance
«Initialize model parameters

*Use EM and iterate to convergence:
E-step: Compute assignments for which regions are foreground / background
M-step: Update model parameters

*Trying to maximize likelihood — consistency in shape & appearance




Experiments

Experimental procedure

Two series of experiments:
« Fixed-scale model - Objects the same size (manual normalization)

« Scale-invariant model - Objects between 100 and 550 pixels in width
Datasets
Training Motorbikes Airplanes Frontal Fa(_;_es

» 50% images
« No identifcation of
object within image

Testing Cars (Side) Cars (Rear) Spotted cats

+50% images

« Simple object
present/absent test

Motorbikes

Shape model

<=3 lﬂﬂaaawua
(&) lﬂ CEZERGEGE
I ENLNEDEEE
ﬂaaunﬁiﬁai

. )
BEZ IEI&EE

Background images evaluated with
motorbike model

Frontal faces
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Auplane shape model
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Spotted cats

Spotted cat shaps model
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Comparison to other methods

Dataset | Ours | Others

Recall-Precision

. Weber et al.
Motorbikes | 7.5 16.0 [ECCV ‘00]

Faces 4.6 6.0 Weber

Airplanes 9.8 32.0 Weber

Agarwal

'02]

% equal error
rate

Cars(Side) | 115 | 21.0 | Rothecev] T T U pracision

Summary of results

Fixed scale | Scale invariant
Dataset ; ;
experiment experiment
Motorbikes 7.5 6.7
Faces 4.6 4.6
Airplanes 9.8 7.0
Cars (Rear) 15.2 9.7
Spotted cats 10.0 10.0

% equal error rate

Note: Within each series, same settings used for all datasets

Robustness of Algorithm
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Overview of approaches to
category recognition
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Summary

« Comprehensive probabilistic model for object classes

« Learn appearance, shape, relative scale, occlusion etc.
simultaneously in scale and translation invariant manner

« Same algorithm gives <= 10% error across 5 diverse datasets with
identical settings
Limitations — future work

* Very reliant on region detector
Different part types (e.g. edgel curves)

* Only learns a single viewpoint
Use mixture models

* Need lots of images to learn
Bayesian learning - fewer images [ICCV '03 (Fei Fei, Fergus, Perona)]

» Need more through testing




