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Unsupervised Learning of Models 
for Object Class Recognition

Tuyen Huynh
Prateek Jain

* Slides taken from R. Fergus, P. Perona and A. Zisserman

CS 395T
Object Recognition

Goal

• Recognition of object categories

• Unassisted learning

Some object 
categories

Learn from examples

Difficulties:

• Size variation
• Background clutter
• Occlusion
• Intra-class variation

Problems

¥ Three problems
¥ Segmentation of training images
¥ Part selection
¥ Estimation of model parameters

Provide framework to solve these problem 
automatically

Related Work

¥ Hierarchical model from edge elements
¥ Statistical model from shape space densities
¥ Active appearance models
¥ Gradient descent on a deformation energy 

function
Require some kinds of labeled in the 

training images

Approach

May use other 
methods for part 

selection

Can model different aspects 
with different set of 

parameters
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Model: Constellation of Parts

Object composition by parts and shape

Part selection I
¥ Interest operator by Forstner

¥ corners
¥ intersection of 2+ lines
¥ center points of circular patterns

¥ Vector quantization by k-means clustering
¥ Retain clusters with at least 10 patterns

¥ Remove patterns which are similar to others
¥ Use greedy search to find the most 

informative parts

Part selection I A generative object model I
¥ Assume T different types of parts
¥ Observable data

¥ Hidden/Missing data:
¥ Vector h=(h1, h2, …, hT) where hi ∈ {0,1,2,…,Ni}
¥ Vector xm: positions of missing parts

2-dimensional vector
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Row t = All locations of part 
type t in the image

A generative object model I
¥ Joint probability density: P(X0,xm,h)
¥ Two auxiliary variables:

¥ Binary vector b=(b1,b2, …,bF) where bi = 1 if hi > 
0

¥ Vector n=(n1,n2,…,nT) where ni is the number of 
background candidates in row i of X0

→P(X0,xm,h) = P(X0, xm, h, n, b)
= P(X0,xm|h,n)p(h|n,b)p(n)p(b)

A generative model I
Mt: the average number of 

background of type t per image

H(b,n): the set of all hypotheses 
consitent with b and n

Nf: the total number of dectections of 
the type of part f

zT=(xoTxmT): the coordinates of all 
foreground detections. Modeled by 

Gaussian(μ,∑)

Xbg: the coordinates of all background 
detections. Modeld by an uniform 

density.
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Part Selection II

Location

Scale

(x,y) coords. of region center

Diameter of region (pixels)

• Find regions within image

• Use Kadir and Brady's                     
salient region operator [IJCV ’01]

• Uses gray-scale input
• Finds maxima in entropy over scale and location

Appearance

11x11 patchNormalize
Projection onto

PCA basis

c1

c2

c15

…
…

…
..

• Normalize all the images to same size
• Representation in low-dimensional vector space, hence speeds 
up computation
• Ignores noise, hence makes algorithm robust

Model II

• Appearance is highest level abstraction
• Occlusion is lowest level abstraction
• h – Hypothesis vector, mapping a feature to each part
• If h (p)=0, part p is occluded

Model II
¥ Appearance

¥ Each part has Gaussian Density in Appearance Space
¥ Independent for each part 
¥ Gaussian density for background
¥ Feature not in hypothesis calculated under background 

density
¥ dp=0 if part occluded
¥ Parameters:                            , 

Model II

¥ Shape
¥ Same as Weber et al.’s model
¥ Joint Gaussian density for foreground features
¥ Uniform density for background features
¥ Parameters: 

Model II

¥ Relative Scale
¥ Scale with reference to a fixed frame
¥ Modeled by Gaussian density
¥ Parts assumed independent of each other
¥ Parameters: 
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Model II

¥ Occlusion 
¥ Same as Weber et al.’s model
¥ Number of features detected modeled using 

Poisson distribution
¥ Probability table for all possible occlusion 

patterns is a parameter

Foreground model

Gaussian shape pdf

Poission pdf on # 
detections

Uniform shape pdf

Gaussian part appearance pdf

Generative probabilistic model

Clutter model
Gaussian background 

appearance pdf

Gaussian 
relative scale pdf

log(scale)

Prob. of detection

0.8 0.75 0.9

Uniform
relative scale pdf

log(scale)

based on Burl, Weber et al. [ECCV ’98, ’00]

Classification

¥ Priors estimated using training set
¥ Object iff R>threshold

Motorbikes
Samples from appearance model

• Task: Estimation of model parameters

Learning

• Let the assignments be a hidden variable and use EM algorithm to 
learn them and the model parameters

• Chicken and Egg type problem, since we initially know neither:

- Model parameters

- Assignment of regions to foreground / background

Learning procedure

E-step: Compute assignments for which regions are foreground / background

M-step: Update model parameters 

•Find regions & their location, scale & appearance

•Initialize model parameters

•Use EM and iterate to convergence:

•Trying to maximize likelihood – consistency in shape & appearance
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Experiments

Experimental procedure
Two series of experiments:
• Fixed-scale model         - Objects the same size (manual normalization)
• Scale-invariant model - Objects between 100 and 550 pixels in width

Datasets

Training
• 50% images
• No identifcation of 

object within image 

Testing
• 50% images
• Simple object 

present/absent test

Motorbikes Airplanes Frontal Faces

Cars (Side) Cars (Rear) Spotted cats

Motorbikes Background images evaluated with 
motorbike model

Frontal faces Airplanes
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Spotted cats Summary of results

10.010.0Spotted cats

9.715.2Cars (Rear)

7.09.8Airplanes

4.64.6Faces

6.77.5Motorbikes

Scale invariant 
experiment

Fixed scale 
experimentDataset

% equal error rate

Note: Within each series, same settings used for all datasets

Comparison to other methods

Agarwal
Roth [ECCV 

’02]
21.011.5Cars (Side)

Weber32.09.8Airplanes

Weber6.04.6Faces

Weber et al. 
[ECCV ‘00]16.07.5Motorbikes

OthersOursDataset

�% equal error 
rate

Robustness of Algorithm

Ease of 
training

# Categories 
(log2)

Overview of approaches to 
category recognition

�Unsupervise

d

�0 �Labelled

�Normalized 

& labelled

�Normalized 

& labelled & 

segmented

�1

�2

�3

�8

�Schneiderman & Kanade [CVPR ’00]

�Weber et al. [ECCV ’00]

�Fergus et al. [CVPR 
’03]

�14 �Humans

�Viola & Jones [CVPR ’01]

Summary

Limitations → future work

• Comprehensive probabilistic model for object classes

• Learn appearance, shape, relative scale, occlusion etc. 
simultaneously in scale and translation invariant manner 

• Same algorithm gives <= 10% error across 5 diverse datasets with 
identical settings 

• Very reliant on region detector
Different part types (e.g. edgel curves)

• Only learns a single viewpoint
Use mixture models

• Need lots of images to learn
Bayesian learning - fewer images  [ICCV ’03 (Fei Fei, Fergus, Perona)]

• Need more through testing


