Unsupervised learning of Categories from Sets of Partially Matching Features

Kristen Grauman and Trevor Darrell CVPR 2006

Presented By Shilpa Gulati and Muhammad Zubair Malik 4-12-2007

[Most of the slides borrowed from Grauman presentatio

Motivation

- Automatically learn object categories from unlabeled images.
- Allow optional supervision.
- Train classifiers for new images.

Background

The Pyramid Match Kernel

The Need of a good Kernel

- Discriminative classifiers require a good similarity measure
- Given a good similarity measure we can train a whole range of classifiers (perceptrons,pca, hyperplane or any complicated shape classifiers)
- Of particular interest are hyper-plane, maximum margin classifiers: Support Vector Machines
- Looking at support vectors is far efficient than calculating all pair-wise comparisons (NN)

The Notion of similarity

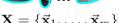
- Dot Product works well for linearly separable data that is not noisy
- If the data is not linearly separable and if we can find a <u>symmetric semi-positive definite</u> function of it, we can use its dot product

 $\langle \mathbf{x}_1, \mathbf{x}_2 \rangle \leftarrow K(\mathbf{x}_1, \mathbf{x}_2) = \langle \varphi(\mathbf{x}_1), \varphi(\mathbf{x}_2) \rangle$

- The Kernel matrix encodes this information
- The eigen functions of Mercer kernel act as features
- Icenoc
 - Computational complexity increases (high dimension)
 - Risk Over fitting the data

Image representation

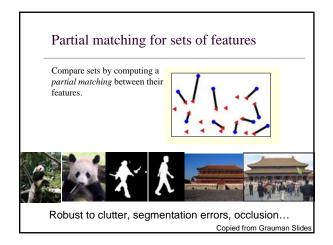
An image is a set local features.

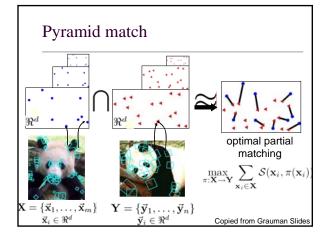


 $\mathbf{Y} = \{ ec{\mathbf{y}}_1, \dots, ec{\mathbf{y}}_n \}$

■ The sets **X** and **Y** can have different sizes.

- Kernel matrix is the information bottleneck, and must be selected discreetly
 - A diagonal kernel matrix means we cannot discriminate, all data points are orthogonal to each other and no clusters exist
- In this case we have to consider:
 - Each instance is unordered set of vectors
 - Varying number of vectors per instance





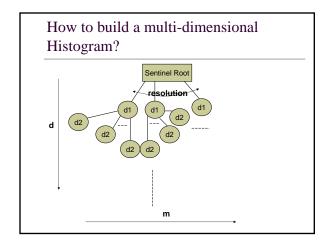
Pyramid match overview

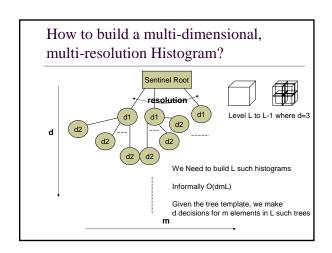
Pyramid match kernel measures similarity of a partial matching between two sets:

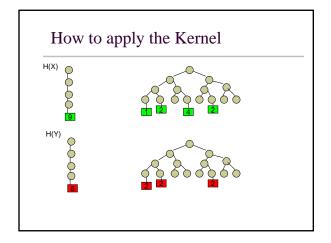
- Place multi-dimensional, multi-resolution grid over point
- Consider points matched at finest resolution where they fall into same grid cell
- Approximate similarity between matched points with worst case similarity at given level

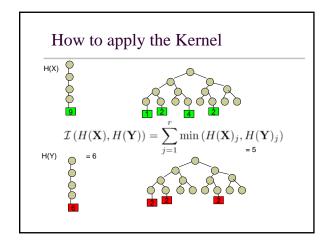
No explicit search for matches!

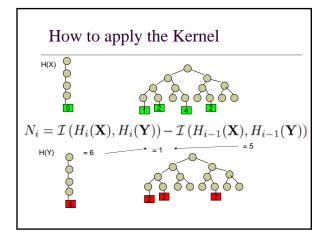
Copied from Grauman Slides

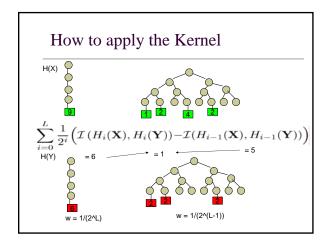






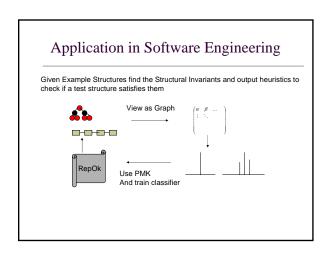


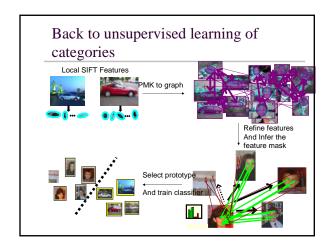




PMK is a Mercer Kernel

- Clearly histogram intersection is a positive definite function (min of two positive numbers cannot be less than zero)
- Mercer Kernels have good modularity properties. Given two kernels K1 and K2, and constants a,b
 - K1+K2 is also a mercer kernel
 - aK1 is also a kernel
 - aK1+bK2 is also a kernel





Similarity between two images

- Similarity between two sets of features:
 - Use pyramid match kernel.
 - A scalar value for each pair of images.
- Partial Matching
 - The points (features) of smaller set are mapped to subset of points of larger set.
 - Not all features are matched.

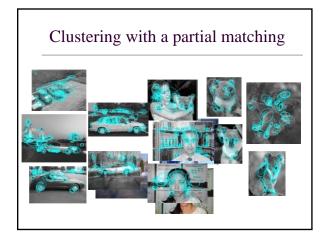
Similarity Matrix

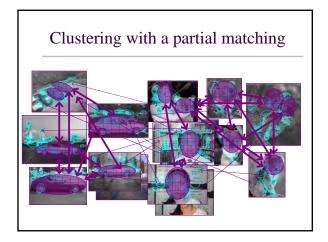
		X_1	\mathbf{X}_2		X_{i}	X_N
	X ₁	K ₁₁	K ₁₂			
	X_2	K_{21}	K ₂₂			
	X _j	K_{j1}	K_{j2}		K _{ij}	
- 1	X _N	K_{N1}	K _{N2}	:		 K_{NN}

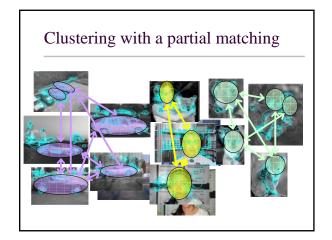
 \mathbf{K}_{ij} is a scalar representing the similarity between sets \mathbf{X}_i and \mathbf{X}_j .

Clustering

- Partition the data into two sets
 - Shi and Malik's efficient approximation of Normalized Cuts algorithm.
- Optimal partitioning
 - Maximizes intra-cluster similarity.
 - Minimizes inter-cluster similarity.
- For k > 2 clusters
 - Recursively partition.

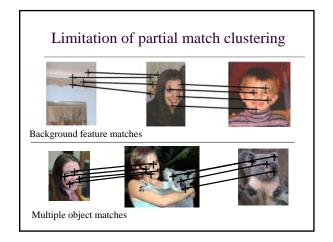






Partial Matching: Again

- Partial Matching: a key feature.
 - Not all features of a set are matched.
- This implies
 - Robustness to clutter and occlusion.
 - These features most likely will not be matched to anything.
 - But images with similar backgrounds may match.
 - Since some of the features match!



Overcoming the limitations

- Within each cluster, for each cluster member:
 - Identify features that form matching with other cluster members.
 - Greater number of matchings imply greater weight for that feature.

