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Bayesian Reasoning

 Allows computation with 
probabilistic relationships 
between variables

 Information flows in both 
directions

 Learning the relationships 
can be quite difficult but it 
is generally easier than 
learning and storing the 
full joint probability table

p(c|r,s)  = p(c|r,w,s) = 0.444444
p(c|r)     = 0.8
p(c|r,w) = 0.793713

Image from http://www.ra.cs.uni-tuebingen.de/software/JCell/tutorial/ch03s03.html



Photographs are not taken in a 
uniform distribution

Distributions of foreground and 
background are related

Foreground objects are related
Location of an object in a picture is related 

to its scale



Algorithm Overview

Capture the ‘gist’ of the image



Database
 LabelMe set (transformed to grayscale)
 2688 fully labeled images
 Test Classes:

 Person, Boat
 Tree, Building, Car



Gabor filters

Multiple scales, orientations, and phases
Applied in frequency domain



Principal Components Analysis

Subtract mean filter 
response across 
images (for each set 
of parameters)

Find k principal 
eigenvectors

Example set of filter responses



Calculate PDF using EM

Project filter responses into k-dimensional 
component space

Separate class/non-class vectors
Use EM to find most likely mixture of M 

Gaussians for 
 p(context|class)
 p(context|!class)

Use EM to find most likely locations and 
scales



Algorithm Overview

Capture the ‘gist’ of the image



Testing

Apply filter bank
 To all images
 To a subset of images

Project into component space
 Each filter
 All filters

Calculate probability of containing each object
p(object|context) = p(context|object)*p(object)/p(context)

 If probability>threshold, calculate probable 
locations and scales

X

X



Research Questions

Which Gabor filters (s,Θ,Φ)?
How many components (k)?
How many Gaussians (m)?
How can you avoid a fixed-size 

requirement?
How do you find enough memory?
Can you make it iterative so that you do 

not need all images up front?



Experimental results

Varied scales
Varied orientations
Varied phase

Third try’s a charm



Experimental results

Varied number of gaussians

In

Out



Experimental Results

Different numbers of components

Cars: 2 components Cars: 10 components



Experimental Results

Different numbers of components

Cars: 20 components Cars: 30 components



More results
Tree: 30 Person: 30

Building: 15 Building: 30



Conclusion

Needs work
 Iterative method
 Lower memory requirements
 Discover new components as needed

Higher components may have more 
discriminating features

Additional Gaussians do not seem to add 
much



Future Work

Variable image size
 Shifting window
 Combine with other feature detectors

Learn additional probabilistic relationships
Iterative change
Try tweaking filters again


