Context-driven Probabilistic Object Classification

Object Recognition Joseph Cooper

Outline

- General idea
 - Bayesian reasoning
 - Non-uniform photography practices
- ➢ Algorithm
- Implementation
 - Details for exploration
- Results

Bayesian Reasoning

- Allows computation with probabilistic relationships between variables
- Information flows in both directions
- Learning the relationships can be quite difficult but it is generally easier than learning and storing the full joint probability table

p(c|r,s) = p(c|r,w,s) = 0.444444p(c|r) = 0.8p(c|r,w) = 0.793713

Photographs are not taken in a uniform distribution

- Distributions of foreground and background are related
- Foreground objects are related
- Location of an object in a picture is related to its scale

Algorithm Overview

Capture the 'gist' of the image

Database

- LabelMe set (transformed to grayscale)
- 2688 fully labeled images
- Test Classes:
 - Person, Boat
 - Tree, Building, Car

Gabor filters

$$g_{\lambda,\theta,\phi,\sigma,\gamma}(x,y) = \exp\left(-\frac{x^{'2} + \gamma^2 y^{'2}}{2\sigma^2}\right) \cos\left(2\pi \frac{x^{'}}{\lambda} + \phi\right)$$

$$x' = x\cos(\theta) + y\sin(\theta)$$
$$y' = -x\sin(\theta) + y\cos(\theta)$$

Multiple scales, orientations, and phases

Applied in frequency domain

Principal Components Analysis

- Subtract mean filter response across images (for each set of parameters)
- Find k principal eigenvectors

Example set of filter responses

Calculate PDF using EM

- Project filter responses into k-dimensional component space
- Separate class/non-class vectors
- Use EM to find most likely mixture of M Gaussians for
 - p(context|class)
 - p(context|!class)
- Use EM to find most likely locations and scales

Algorithm Overview

Capture the 'gist' of the image

Testing

- > Apply filter bank
 - ▼ To all images
 - To a subset of images
- Project into component space
 - 🗴 Each filter
 - All filters
- Calculate probability of containing each object p(object|context) = p(context|object)*p(object)/p(context)
- If probability>threshold, calculate probable locations and scales

Research Questions

- \succ Which Gabor filters (s, Θ , Φ)?
- How many components (k)?
- ➢ How many Gaussians (m)?
- How can you avoid a fixed-size requirement?
- How do you find enough memory?
- Can you make it iterative so that you do not need all images up front?

Experimental results

Varied scales
Varied orientations
Varied phase

Out of memory. Type HELP MEMORY for your options.

Third try's a charm

Experimental results

Varied number of gaussians

In

Experimental Results

Different numbers of components

Cars: 2 components

Cars: 10 components

Experimental Results

Different numbers of components

Cars: 20 components

Cars: 30 components

More results

Building: 30

Conclusion

Needs work

- Iterative method
- Lower memory requirements
- Discover new components as needed
- Higher components may have more discriminating features
- Additional Gaussians do not seem to add much

Future Work

- ➢ Variable image size
 - Shifting window
 - Combine with other feature detectors
- Learn additional probabilistic relationships
- Iterative change
- Try tweaking filters again