
Context-driven Probabilistic
Object Classification

Object Recognition

Joseph Cooper

Outline

General idea
 Bayesian reasoning
 Non-uniform photography practices

Algorithm
Implementation

 Details for exploration

Results

Bayesian Reasoning

 Allows computation with
probabilistic relationships
between variables

 Information flows in both
directions

 Learning the relationships
can be quite difficult but it
is generally easier than
learning and storing the
full joint probability table

p(c|r,s) = p(c|r,w,s) = 0.444444
p(c|r) = 0.8
p(c|r,w) = 0.793713

Image from http://www.ra.cs.uni-tuebingen.de/software/JCell/tutorial/ch03s03.html

Photographs are not taken in a
uniform distribution

Distributions of foreground and
background are related

Foreground objects are related
Location of an object in a picture is related

to its scale

Algorithm Overview

Capture the ‘gist’ of the image

Database
 LabelMe set (transformed to grayscale)
 2688 fully labeled images
 Test Classes:

 Person, Boat
 Tree, Building, Car

Gabor filters

Multiple scales, orientations, and phases
Applied in frequency domain

Principal Components Analysis

Subtract mean filter
response across
images (for each set
of parameters)

Find k principal
eigenvectors

Example set of filter responses

Calculate PDF using EM

Project filter responses into k-dimensional
component space

Separate class/non-class vectors
Use EM to find most likely mixture of M

Gaussians for
 p(context|class)
 p(context|!class)

Use EM to find most likely locations and
scales

Algorithm Overview

Capture the ‘gist’ of the image

Testing

Apply filter bank
 To all images
 To a subset of images

Project into component space
 Each filter
 All filters

Calculate probability of containing each object
p(object|context) = p(context|object)*p(object)/p(context)

 If probability>threshold, calculate probable
locations and scales

X

X

Research Questions

Which Gabor filters (s,Θ,Φ)?
How many components (k)?
How many Gaussians (m)?
How can you avoid a fixed-size

requirement?
How do you find enough memory?
Can you make it iterative so that you do

not need all images up front?

Experimental results

Varied scales
Varied orientations
Varied phase

Third try’s a charm

Experimental results

Varied number of gaussians

In

Out

Experimental Results

Different numbers of components

Cars: 2 components Cars: 10 components

Experimental Results

Different numbers of components

Cars: 20 components Cars: 30 components

More results
Tree: 30 Person: 30

Building: 15 Building: 30

Conclusion

Needs work
 Iterative method
 Lower memory requirements
 Discover new components as needed

Higher components may have more
discriminating features

Additional Gaussians do not seem to add
much

Future Work

Variable image size
 Shifting window
 Combine with other feature detectors

Learn additional probabilistic relationships
Iterative change
Try tweaking filters again

