Context-driven Probabilistic Object Classification
Object Recognition
Joseph Cooper
Outline

- General idea
 - Bayesian reasoning
 - Non-uniform photography practices

- Algorithm

- Implementation
 - Details for exploration

- Results
Bayesian Reasoning

- Allows computation with probabilistic relationships between variables
- Information flows in both directions
- Learning the relationships can be quite difficult but it is generally easier than learning and storing the full joint probability table

\[
p(c|r,s) = p(c|r,w,s) = 0.444444 \\
p(c|r) = 0.8 \\
p(c|r,w) = 0.793713
\]

Image from http://www.ra.cs.uni-tuebingen.de/software/JCell/tutorial/ch03s03.html
Photographs are not taken in a uniform distribution

- Distributions of foreground and background are related
- Foreground objects are related
- Location of an object in a picture is related to its scale
Algorithm Overview

Capture the ‘gist’ of the image

\[
p(o|c) = \frac{p(c|o)p(o)}{p(c)}
\]
Database

- LabelMe set (transformed to grayscale)
- 2688 fully labeled images
- Test Classes:
 - Person, Boat
 - Tree, Building, Car
Gabor filters

\[g_{\lambda, \theta, \phi, \sigma, \gamma}(x, y) = \exp \left(-\frac{x'^2 + \gamma^2 y'^2}{2\sigma^2} \right) \cos \left(2\pi \frac{x'}{\lambda} + \phi \right) \]

\[x' = x \cos(\theta) + y \sin(\theta) \]
\[y' = -x \sin(\theta) + y \cos(\theta) \]

- Multiple scales, orientations, and phases
- Applied in frequency domain
Principal Components Analysis

- Subtract mean filter response across images (for each set of parameters)
- Find k principal eigenvectors
Calculate PDF using EM

- Project filter responses into k-dimensional component space
- Separate class/non-class vectors
- Use EM to find most likely mixture of M Gaussians for
 - $p(\text{context} | \text{class})$
 - $p(\text{context} | \lnot \text{class})$
- Use EM to find most likely locations and scales
Algorithm Overview

Capture the ‘gist’ of the image
Testing

- Apply filter bank
 - To all images
 - To a subset of images
- Project into component space
 - Each filter
 - All filters
- Calculate probability of containing each object
 \[p(\text{object}|\text{context}) = \frac{p(\text{context}|\text{object}) \cdot p(\text{object})}{p(\text{context})} \]
- If probability > threshold, calculate probable locations and scales
Research Questions

- Which Gabor filters \((s, \Theta, \Phi)\)?
- How many components \((k)\)?
- How many Gaussians \((m)\)?
- How can you avoid a fixed-size requirement?
- How do you find enough memory?
- Can you make it iterative so that you do not need all images up front?
Experimental results

- Varied scales
- Varied orientations
- Varied phase

Out of memory. Type HELP MEMORY for your options.

- Third try’s a charm
Experimental results

- Varied number of gaussians

In

Out
Experimental Results

Different numbers of components

Cars: 2 components

Cars: 10 components
Experimental Results

- Different numbers of components

- Cars: 20 components

- Cars: 30 components
More results

Tree: 30

Person: 30

Building: 15

Building: 30
Conclusion

- Needs work
 - Iterative method
 - Lower memory requirements
 - Discover new components as needed

- Higher components may have more discriminating features

- Additional Gaussians do not seem to add much
Future Work

- Variable image size
 - Shifting window
 - Combine with other feature detectors
- Learn additional probabilistic relationships
- Iterative change
- Try tweaking filters again