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The Nearest-Neighbor Search Problem

* Input Description: A set S of n points in d dimensions; a
query point q.

 Which point in S is closest to g7

( Linear scan approach has query time of ©(dn) )
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The Nearest-Neighbor Search Problem
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The Nearest-Neighbor Search
Problem:Application

Depends on the value of @
* low d: graphics, vision, natural language, etc
* high d:
— similarity search in databases (text, images etc)

- finding pairs of similar objects (e.g., copyright violation
detection)

- useful subroutine for clustering
- Classification



The Nearest-Neighbor Search Problem

« Efficient solutions have been discovered for the case when the
points lie in a space of constant dimension.

(For example, if the points lie in the plane, the nearest-neighbor problem can be

solved with O(log n) time per query, using only O(n) storage.) .

« Unfortunately, as the dimension grows, the algorithms become
less and less efficient. More specifically, their space or time
requirements grow exponentially in the dimension.



The Nearest-Neighbor Search Problem

* r-Near Neighbor: for any query q, returns a point peP
s.t. [[p-q]| = r (if it exists)
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« c-Approximate r-Near Neighbor: build data structure which,
for any query Q:
— If there is a point peP, |[|p-q|| =r
— it returns p’eP, ||p'-q|| < cr . .



Metric space

Metric Space: In mathematics, a metric space is a set where a
notion of distance (called a metric) between elements of the set
is defined. The metric space which most closely corresponds to
our intuitive understanding of space is the 3-dimensional
Euclidean space.

1.d(x,y) 20 (non-negativity)

2.d(x,y)=0 ifandonlyif x=y (identity of indiscernibles)
3.d(x,y) =0 implies D(x,y)>0 (isolation)

4.d(x,y)=d(y, x) (symmetry)

5.d(x, z) =d(x,y) +d(y, z) (triangle inequality).
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Quad-Tree

« Split the space into 29 equal subsquares.
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Quad-Tree:Build

* Split the space into 27 equal subsquares

 Repeat until done:
- only one point left
- no point left
* Variants:
- split only one dimension at a time



Quad-Tree:Query

* Near neighbor (range search):
— put the root on the stack

- repeat
* pop the next node T from the stack
o for each child C of T
- if C is a leaf, examine point(s) in C

- if C intersects with the ball of radius r around g, add C to the
stack (bounding box)



Quad-Tree
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Quad-Tree

e Start range search with r = o
 Whenever a point is found, update r
* Only investigate nodes with respect to current r



Quad-Tree

« Simple data structure
e Versatile, easy to implement

e Disadvantages:

- Empty spaces: if the points form sparse clouds, it takes a while to
reach them

- Space exponential in dimension
- Time exponential in dimension, e.g., points on the hypercube
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Motivation:Space issues




KD-Tree [Bentley 75]

 Main ideas:
- only one-dimensional splits

- instead of splitting in the median, random position
or split “carefully” (many variations)

- near(est) neighbor queries: as for quadtrees
* Advantages:

- no (or less) empty spaces

— only linear space
 Exponential query time still possible



KD-Tree: Animation



-y




4
+
+
+
*
*
+




-y




-y




-y




-y




+
*
4 . v, * i
+ & + *
+* *
N LI, % + + ¥ . *
v 2t T e ", ME
* *
b + -t * * *
*
- * * *
* + + * *
o +




-y




-y




+
*
4 . v, * i
+ & + *
+* *
N LI, % + + ¥ . *
v 2t T e ", ME
* *
b + -t * * *
*
- * * *
* + + * *
o +




-y




-y




-y




-y




+
* . o
R - w 1{- . o " * -
i % . *, % + Al
- +
* a* «v‘ T * B, + W +
w & . * * *
- * *
" Y * *
" *
o +




























Auton's Graphics




Auton's Graphics




KD-Tree:Exponential Query Time

 What does it mean exactly ?

- Unless we do something really stupid, query time is at
most dn

- Therefore, the actual query time is
Min[ dn, exponential(d) ]

Object retrieval with large vocabularies and fast spatial matching
James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman

http:/lIwww.cgg.cvut.czimembers/havran/
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Tree-Structure




Motivation: Curse of Dimension

* The tree structure is still quite bad though, when the
dimension is around 20-30

« Unfortunately, it seems inevitable (both in theory and
experiments) “Curse of Dimension”



Hash Table

Ha=h Table 1
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Locality Sensitive Hashing [Indyk-Motwani'98]

« Hash functions are /ocality-sensitive, if, for a random hash
random function h, for any pair of points p,q we have:

- Pr[h(p)=h(q)] is “high” if p is “close” to g

- Prfh(p)=h(q)] is “low” if p is"far” from q

The probabilities are based on the functions from
the family H.

A P




Locality Sensitive Hashing

» A family H of functions h: Rd — U is called
(r,cr, P1,P2)-sensitive, if for any p,q:

— if ||p-q|| <r then Pr[ h(p)=h(q) ] > P1

— if ||p-q|| >cr then Pr[ h(p)=h(q) ] < P2

Now, we consider NN with parameter r, €. Set r1=r,
r2= (1+€)r, where c=(1+¢).



LSH:Function Exist?

« Consider the hypercube, i.e.,
- points from {0, 1}¢
- Hamming distance D(p,q)= # positions on which p and q differ

« Define hash function h by choosing a set / of k random
coordinates, and setting

h(p) = projection of p on /



LSH: Hamming Distance

. Take " 1
~ d=10, p=0101110010 016 4
_ k=2, I={2,5)
. Then h(p)=11 /00 /'“”
000 001

3-bit binary cube

s L Two example distances: 100->011
— Probabilities. has distance 3 (red path); 010-

Pr[ h(p)=h(q) ] = 1-D(p,q)/d >111 has distance 2 (blue path)



LSH: Preprocessing

Algorithm: Preprocessing, O(In)

Input: A set of points P, / (number of hash tables)
Output: Hash tables 7, / =1,...., /
Foreach 7 =1,...,/

Initialize hash table 7, by generating

a random hash function G, (.)
ForeachZz =1,...,/

Foreach/=1,... n

Store point P; on bucket G,(P;) of hash table T,



LSH: Approximate Nearest Neighbor Query

Algorithm Approximate Nearest Neighbor Query, O(l)

Input A query pointd , M (number of approximate nearest
neighbors)

Output M (or less) approximate nearest neighbors

b}
Foreach 7 =1,...,/
§«§ U {points found in G;(¢) bucket of table T'; }
Return M nearest neighbors of 4 found in set §
/*Can be found by main memory linear search*/



LSH: Analysis(more proof and analysis in GIM99')

* By proper choice of parameters k and /, we can
make, for any p, the probability that

h(p)=h(q) for some i
look like this:
o K= 10g<1,p2)(n/B) where B is size of bucket |
4 (In(1/pI)) distance

. l—(ﬁ) where V=

‘B (In(1/p2))
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Motivation: Non-Metric Distance

Distance function may be non-metric.
Each query requires n distance calculation for a database of
size n.

What if the distance function is very complicated and expensive
computationally.

The Solution: BoostMap

BoostMap is a method that can reduce the number of expensive distance
calculations down to some d << n.

It works for ANY distance function.



Expensive Distance Measures

 Comparing d-

Y;

dimensional vectors is
efficient:
- 0O(d) time.

Yo  Y; Yo - Yaq

59



Expensive Distance Measures

» Comparing d- e Comparing strings of
dimensional vectors is length d with the edit
efficient: distance is more

- O(d) time. expensive:
- O(d?) time

 Reason:alignment.

immigration

Y4 Y, Y; Y, - Yq imitation
60



Expensive Distance Measures

» Comparing d- ® Comparing strings of
dimensional vectors is length d with the edit
efficient: distance is more

- O(d) time. expensive:
= O(d?) time.

®m Reason: alignment.

immigration

Yo Yo ¥Ys Y4 - Y4 im it a t ion
61



Hand Shape Classification

Database (80,640 images)




Hand Shape Classification

Database (80,640 images)

Chamfer distance: 112 seconds per query




Embeddings

database




Embeddings

database




Embeddings

database




B Measure distances between vectors
(typically much faster).

Embeddings

database




B Measure distances between vectors
(typically much faster).

Embeddiﬂgs m Caveat: the embedding must

preserve similarity structure.

database




ldeal Embedding Behavior

original space X Rd

For any g: we want F(NN(q)) = NN(F(q)).
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ldeal Embedding Behavior

original space X Rd

For any g: we want F(NN(q)) = NN(F(q)).
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ldeal Embedding Behavior

original space X Rd

For any g: we want F(NN(q)) = NN(F(q)).
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*BoostMap: 1D Embeddings

 Use a reference object r

A set of five 2D points (shown on the left), and an embedding F of
those five points into the real line, using r as the reference object.



*BoostMap: 1D Embeddings

« Use “pivot points”

D, {>,Xx,) = D, (%,)

Fr, () Dy(3¢4,2)

Select the pair (x1,x2) and construct the triangle using (x,x1,x2).
The length of line segment BD is equal to F*"*(x)

(Triangle inequality?)



Emtgeddings Seen As Classifiers

Classification task: is g
closerto a orto b?
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Embeddings Seen As Classifiers
b

Classification task: is g
closerto a orto b?

® Any embedding F defines a classifier F’(q, a, b).
= F’ checks if F(q) is closer to F(a) or to F(b).

75



Classifier Definition
b

Classification task: is g
closerto a orto b?

® Given embedding F: X 2 R¢:

= F'(q, a, b) = [[F(q) — F()|[ - [IF(a) — F(a)ll.
® F'(q, a, b) >0 means “q is closer to a.”
®F'(q,a, b)<0means “qis closertob.”

76



Key Observation

original space X
b

m |f classifier F' is perfect, then for every q,
F(NN(q)) = NN(F(q)).
= |f F(q) is closer to F(b) than to F(NN(q)), then triple
(g, a, b) is misclassified. 77



Key Observation

original space X
b

m Classification error on triples (g, NN(q), b) measures
how well F preserves nearest neighbor structure.

78



Optimization Criterion

 Goal: construct an embedding F optimized for k-nearest neighbor
retrieval.

 Method: maximize accuracy of F’ on triples (q, a, b) of the following
type:
- ( IS any object.
- a is a k-nearest neighbor of g in the database.
- b is in database, but NOT a k-nearest neighbor of q.

 If F’ is perfect on those triples, then F perfectly preserves k-nearest
neighbors.

79



Overview of Strategy

o Start with simple 1D embeddings.
* Convert 1D embeddings to classifiers.

 Combine those classifiers into a single,
optimized classifier.

e Convert optimized classifier into a
multidimensional embedding.

80



1D Embeddings as Weak Classifiers

= 1D embeddings define weak classifiers.
= Better than a random classifier (50% error rate).
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1D Embeddings as Weak Classifiers

= 1D embeddings define weak classifiers.
= Better than a random classifier (50% error rate).

= \We can define lots of different classifiers.

= Every object in the database can be a reference object.
= Each pair also can work as 'pivot".”
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1D Embeddings as Weak Classifiers

= 1D embeddings define weak classifiers.
= Better than a random classifier (50% error rate).

= \We can define lots of different classifiers.

= Every object in the database can be a reference object.
= Each pair also can work as 'pivot".”

Question: how do we combine many such
classifiers into a single strong classifier?
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1D Embeddings as Weak Classifiers

= 1D embeddings define weak classifiers.
= Better than a random classifier (50% error rate).

= \We can define lots of different classifiers.

= Every object in the database can be a reference object.
= Each pair also can work as 'pivot".”

Question: how do we combine many such
classifiers into a single strong classifier?

Answer: use AdaBoost.

= AdaBoost is a machine learning method designed for exactly

this problem.
84



Using AdaBoost

original space X Real line

m Outputt H=w,F", + w,F', + ... + wF',.

= AdaBoost chooses 1D embeddings and weighs them.

= Goal: achieve low classification error.

= AdaBoost trains on triples chosen from the database.

85



BoostMap : Input

A training set of T=((¢,4,0)),...(¢,,4,b,)) Of t triples of objects from X

A set of labels Y=(y, ...y) , where JE(-Ll) is the class label of (4, 4;5)
(no triples where 4 ; is equally far from a; , b, )

A set C < X of candidate objects. Elements of C' can be used to
define 1D embeddings. (as ref object or pivot points)

A matrix of distances from each c € C toeach 4;, 4; ,and b,
included in one of the training triples in T.



Training round 0.

Classifier: H ="l don’t know”.
Embedding: F =0

Distance: D(F(x), F(y)) =0.

Weights: all equal to 1/m (example: m = 100,000).

1/m
1/m
1/m
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= Training round 1.

= Classifier: H=a,F'..

= Embedding: F = (F,).

= Distance: D(F(x), F(y)) =
a,|F4(x) — F,(y)l.

(q,, @, by)eeennnnnii. 1/m
(4, @y Dy)eeennnn.. 1/m
(- TN o )9 1/m
(9.,a.,b )....... 1/m

88



Training round 1.

Classifier: H=a,F',.

Embedding: F = (F,).

Distance: D(F(x), F(y)) =
a,|F,(x) = F,(y)l.
= Weights: higher for incorrectly classified triples.

89



= Training round 2.

« Classifier:

H = a1F,1 + aZF,Z'

= Embedding: F = (F,, F,).

= Distance:

a,[F,(x) = F,(y)] + a,|F,(x) = F,(y)l.

D(F(x), F(y)) =

(9,, @, b,).ceennent. W,
(A3, A3, D3)eevnnne, W,
(o= TN o T ISR W,

90



(Qq, @4, by)ennnennnnn, Wi,
(CTHE- PN o 75 FRURRO W,
1 2 (Qs, @5, by)enennnnee. W,
(., 8., b ). ... W,

= Training round j.
= Classifier: H=a,F’;+a,F,+...+aF
= Embedding: F=(F,,F,, ..., F,).
= Distance: D(F(x), F(y)) =
a;|F,(x) = Fo(y)] + @,|F5(x) = Fo(y)l + ... + a|F(x) = Fi(y)l.



(Qq, @4, by)ennnennnnn, W,

(CTHE- PN o 75 FRURRO W,

1 2 (Qs, @5, by)enennnnee. W,
j :

(., 8., b ). ... W,

= Training round j.
= Classifier: H=a,F’;+a,F,+...+aF
= Embedding: F=(F,,F,, ..., F,).
= Distance: D(F(x), F(y)) =

a;|F;(x) = Fy(y)| + a,|F,(x) = Fy(y)l + ... + a|F(x) = Fi(y)l.
= Stop when accuracy stops improving (a, = 0).

92



BoostMap: Summary

Maximizes amount of nearest neighbor structure preserved by the
embedding.

Based on machine learning, not on geometric assumptions.

Combines efficiency of measuring distances in vector spaces with
ability to capture non-metric structure
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A Binning Scheme for Fast Hard
Drive Based Image Search



Motivation: Beyond the RAM limits

* |nvestigate how to scale a content based image retrieval
approach beyond the RAM limits of a single computer and to
make use of its hard drive to store the feature database.

 The scheme cuts down the hard drive access significantly and
results in a major speed up



A Binning Scheme for Fast Hard Drive Based Image Search

database
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A Binning Scheme for Fast Hard Drive Based Image Search

* The algorithm is largely inspired by the success of Locality Sensitive
Hashing for nearest neighbor search.

« Database consists of multiple independent binnings.

« Each binning is defined by a number of prototypes where a prototype is a
vector representing an image.

« The images are assigned to the bin corresponding to the closest prototype,
which is used as a proxy in the search.



A Binning Scheme: Analysis

12

bin hit ratia
= = =
= [ep] i) —_
L L

=
hra
1

i 10 100 1000 1 0000 100000 1000000
#bins

Figure 3. Binning hits: A higher number of bins increases the risk
of a bin miss. By using multiple binnings this can be compensated

for.



A Binning Scheme: Analysis
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Figure 4. The effect of chaining multiple Independent binnings.
Each additional set increases the bin hit ratio. The experiment
with different numbers of bins shows the tendency of converging

to 1.
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Fast Pose Estimation with Parameter Sensitive Hashing

(Learning Silhouette Features for Control of Human Motion)
Liu Ren, Gregory Shakhnarovich , Jessica K. Hodgins, Hanspeter Pfister , Paul A. Viola



Motivation:Hidden State Space

« Approximate not the actual distance between objects, but a
hidden state space distance.

* (X,0) x is feature vector extracted from the image and © is a
parameter vector.



Sub-linear time search with LSH

(1+¢€)r

if d(u,v) < r then P;{r (A(u) = h(v)) > p1

= need p, > p, and
©p, > 112

if d(u,v) > (1 + €)r then P;{r (h(u) = h(v)) < p2

S

Locality Sensitive Hashing [Gionis, Indyk, Motwani, 1999]



Indexing for parameter estimation

(Xla 91)

S

®X,

Input space

Index with LSH and randomized
hash functions that respect input
space locality

X (XN:? QN)
00,
6063
L
o O, .@O@q

@5 1\<t'
O
/

Parameter space

This work: learn hash functions that
respect parameter space locality



Learning PSH functions

Posed as a paired classification problem:

For each pair of examples (x;, X, ) assign label

+11f d@(@h 93) <,
Yij = § —11f d@(e?;? 93') > R,
not defined otherwise,



Learning PSH functions

* Interpret a binary hash function h as a classifier:

(1 if h(x;) = h(x;)

Un(X;, X)) = < | .
n(%s ‘7) —1 otherwise.

. Examples collide, but

not similar in

arameter space
p,(h) -> probability of false positive TP P

1-p,(h) -> probability of false negative Examples similar in

] parameter space, but
no collision




Learning PSH functions

* Assemble some decision stumps for hash
functions that have high accuracy on paired
problem for database examples

e Set threshold so that #false positives + #false
negatives minimal (obtained with two passes over

training examples)

h@?T(X) = <

( .
+1ifp(x) > T,

\ —1 otherwise.






An Ensemble Classifier

Question: how do we combine many such
classifiers into a single strong classifier?



An Ensemble Classifier

Question: how do we combine many such
classifiers into a single strong classifier?

Answer: AdaBoost



LSH

LSH proceeds by randomly selecting & functions among those features
chosen by AdaBoost, thus defining a £-bit hash function:

The entire database is indexed by a hash table with 2" buckets



Pose estimation with PSH

Describe images with multi-scale edge
histograms(silhouette)

Learn PSH functions

Enter training examples into hash
tables

Query database with LSH

Estimate pose from approximate NN
using locally weighted regression




Animation



Discussion

Select the split position for KD-Tree in special domain.
LSH eats much more space.

Non-metric space in computer vision.

Applying BoostMap to other distance functions.

Applying BoostMap to other domains.
- Natural Language Processing
- Biological sequences.

How to guess radius parameter for different problem
Other Application of PSH
Two spaces as input in PSH



