Object Detection using Haar-like Features

CS 395T: Visual Recognition and Search Harshdeep Singh

The Detector

- Using boosted cascades of Haar-like features
- Proposed by [Viola, Jones 2001]
- Implementation available in OpenCV

Haar-like features

- feature = $w_1 \times RecSum(r_1) + w_2 \times RecSum(r_2)$
- Weights can be positive or negative
- Weights are directly proportional to the area
- Calculated at every point and scale

Weak Classifier

- A weak classifier $(h(x, f, p, \vartheta))$ consists of
 - feature (f)
 - threshold (ϑ)
 - polarity (p), such that

$$h(x, f, p, \theta) = \begin{cases} 1 & \text{if } pf(x) < p\theta \\ 0 & \text{otherwise} \end{cases}$$

- Requirement
 - Should perform better than random chance

Attentional Cascade

- Initial stages have less features (faster computation)
- More time spent on evaluating more promising sub-windows

Input:

- f = Maximum acceptable false positive rate per layer (0.5)
- d = Minimum acceptable detection rate per layer (0.995)
- F_{target} = Target overall false positive rate
 - Or maximum number of stages in the cascade
 - For nStages = 14, F_{target} = f ^{nStages} = 6.1 e-5
- P = Set of positive examples
 - 200 distorted versions of a synthetic image

- N = Set of negative examples
 - 100 images from BACKGROUND_Google category of Caltech 101 dataset


```
\begin{split} F_0 &= 1 \\ i &= 0 \end{split} while F_i > F_{target} and i < nStages i &= i + 1 \end{split} Train Classifier for stage i Initialize Weights Normalize Weights Pick the (next) best weak classifier Update Weights Evaluate f_i if f_i > f go back to Normalize Weights Combine weak classifiers to form the strong stage classifier Evaluate F_i
```

```
\begin{aligned} F_0 &= 1 \\ i &= 0 \end{aligned} \\ \text{while } F_i > F_{\text{target}} \text{ and } i < \text{nStages} \\ i &= i + 1 \\ \text{Train Classifier for stage } i \\ \text{Initialize Weights} \\ \text{Normalize Weights} \\ \text{Pick the (next) best weak classifier} \\ \text{Update Weights} \\ \text{Evaluate } f_i \\ \text{if } f_i > f \end{aligned} \\ \text{go back to Normalize Weights} \\ \text{Combine weak classifiers to form the strong stage classifier} \\ \text{Evaluate } F_i \end{aligned}
```

F_i = False alarm rate of the cascade with i stages

```
\begin{split} F_0 &= 1 \\ i &= 0 \\ \end{split} while F_i > F_{target} and i < nStages i &= i + 1 \\ \end{split} Train Classifier for stage i Initialize Weights Normalize Weights Pick the (next) best weak classifier Update Weights Evaluate f_i if f_i > f go back to Normalize Weights Combine weak classifiers to form the strong stage classifier Evaluate F_i
```

F_i = False alarm rate of the cascade with i stages

Weight for each

positive sample 0.5/m negative sample 0.5/n

m – number of positive samples (200) n – number of negative samples (100)

```
\begin{split} F_0 &= 1 \\ i &= 0 \\ \text{while } F_i > F_{target} \text{ and } i < n \text{Stages} \\ i &= i + 1 \\ \text{Train Classifier for stage i} \\ \text{Initialize Weights} \\ \text{Normalize Weights} \\ \text{Pick the (next) best weak classifier} \\ \text{Update Weights} \\ \text{Evaluate } f_i \\ \text{if } f_i > f \\ \text{go back to Normalize Weights} \\ \text{Combine weak classifiers to form the strong stage classifier} \\ \text{Evaluate } F_i \\ \text{Evaluate } F_i \\ \end{split}
```

Weight for each

positive sample 0.5/m negative sample 0.5/n

m – number of positive samples (200) n – number of negative samples (100)

```
\begin{split} F_0 &= 1 \\ i &= 0 \\ \end{split} while F_i > F_{target} and i < nStages i &= i + 1 \\ \end{split} Train Classifier for stage i Initialize Weights   Normalize \ Weights \\ Pick \ the \ (next) \ best \ weak \ classifier \\ Update \ Weights \\ Evaluate \ f_i \\ if \ f_i > f \\ \\ So \ back \ to \ Normalize \ Weights \\ Combine \ weak \ classifiers \ to \ form \ the \ strong \ stage \ classifier \\ Evaluate \ F_i \\ \end{split}
```

The one with minimum error

$$\epsilon_t = min_{f,p,\theta} \sum_t w_t |h(x_t, f, p, \theta) - y_t|$$

 $\epsilon_t = 0.005$

Error minimization

T+: Total sum of weights of positive examples

T-: Total sum of weights of negative examples

S⁺: Total sum of weights of positive examples below the current one

S⁻: Total sum of weights of negative examples below the current one

$$e_1 = S^+ + (T^- - S^-)$$

$$e_2 = S^- + (T^+ - S^+)$$

 $e = min(e_1, e_2)$

```
\begin{split} F_0 &= 1 \\ i &= 0 \end{split} while F_i > F_{target} and i < nStages i &= i + 1 \end{split} Train Classifier for stage i Initialize Weights Normalize Weights Pick the (next) best weak classifier Update Weights Evaluate f_i if f_i > f go back to Normalize Weights Combine weak classifiers to form the strong stage classifier Evaluate F_i
```

$$w_{t+1,t} = w_{t,t} \beta_t^{1-\epsilon_t}$$

 $e_i = 0$, if example x_i is classified correctly $e_i = 1$, otherwise

$$\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$$

 $f_i =$

```
\begin{split} F_0 &= 1 \\ i &= 0 \\ \end{split} while F_i > F_{target} and i < nStages i &= i + 1 \\ \end{split} Train Classifier for stage i Initialize Weights   Normalize \ Weights \\ Pick \ the \ (next) \ best \ weak \ classifier \\ Update \ Weights \\ \hline  Evaluate \ f_i \\ if \ f_i > f \\ go \ back \ to \ Normalize \ Weights \\ \hline Combine \ weak \ classifiers \ to \ form \ the \ strong \ stage \ classifier \\ \hline Evaluate \ F_i \\ \end{split}
```

number of negative samples that were detected by this stage/ total number of negative samples 1/100

```
F_0 = 1
i = 0
while F_i > F_{target} \text{ and } i < nStages
i = i + 1
Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate F_i
if f_i > f
go back to Normalize Weights
Combine weak classifiers to form the strong stage classifier
Evaluate F_i
```

How far will you go to get down to f?

```
\begin{split} F_0 &= 1 \\ i &= 0 \\ \text{while } F_i > F_{\text{target}} \text{ and } i < \text{nStages} \\ i &= i + 1 \\ \text{Train Classifier for stage } i \\ \text{Initialize Weights} \\ \text{Normalize Weights} \\ \text{Pick the (next) best weak classifier} \\ \text{Update Weights} \\ \text{Evaluate } f_i \\ \text{if } f_i > f \\ \text{go back to Normalize Weights} \\ \text{Combine weak classifiers to form the strong} \end{split}
```

stage classifier

Evaluate F,

$$C(x) = \begin{cases} 1 \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & otherwise \end{cases}$$

$$\alpha_t = \log \frac{1}{\beta_t} \qquad \beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$$

Weight is inversely proportional to the training error

Paper

Decrease threshold until the classifier has a detection rate of at least d

OpenCV

- 1. For each positive sample, find the weighted sum of all features
- 2.Sort these values
- 3.Set threshold = sorted_values[(1-d) * |P|]

```
Add another stage?
F_0 = 1
i = 0
while F_i > F_{target} and i < nStages
     i = i + 1
     Train Classifier for stage i
             Initialize Weights
             Normalize Weights
             Pick the (next) best weak classifier
             Update Weights
             Evaluate f
             if f_i > f
                          go back to Normalize Weights
             Combine weak classifiers to form the strong
             stage classifier
             Evaluate F.
```

Resulting Cascade

Which features actually get selected?

Other Objects?

Caltech 101 dataset

"Most images have little or no clutter. The objects tend to be centered in each image. Most objects are presented in a stereotypical pose."

Hand label ROI in 40/64 images

Negative samples taken from BACKGROUND_Google category of Caltech 101

Some features that get selected

Performance

0.2

0.4

0.6

0.8

Hand label ROI

Random distortions

Hand label ROI

Other Categories

Variation in Training Images

High accuracy categories

Low accuracy categories

Skin Color Approximation

- To filter results of face detector
- Derived from [Bradsky 1998]
- Template Image
 - Patches of faces of different subjects under varying lighting conditions

Skin Color Approximation

Result

Evaluated on 435 face images in the Caltech 101 dataset

When does it help?

Without skin filter

With skin filter

Rotated Features

An Extended Set of Haar-like Features for Rapid Object Detection, Lienhart and Maydt

Results

Lessons

- 1. Viola Jones' technique worked pretty well for faces and some other categories like airplanes and car_sides.
- 2. Did not work well with many other categories. A large number of false positives.
- 3. Accuracy depends largely on the amount of variation in training and test images.
- 4. In some cases, the training algorithm is not able to go below the maximum false alarm rate of a layer, even with a very large number of features.
- 5. Selected features for the first few stages are more "intuitive" than the later ones.
- 6. Skin color can be used to increase the precision of face detection at the cost of recall. Dependent on illumination.
- 7. Using rotated features can increase accuracy but not too much.
- 8. Training classifiers is slow! Let OpenCV use as much memory as you have.