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Nearest Neighbor

 Given a query any point   , return the point 
closest to   .

 Useful for finding similar objects in a database.
 Brute force linear search is not practical for 

massive databases.

?

q
q
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The “Curse of Dimensionality”

 For                     , data structures exist that 
require sublinear time and near linear space to 
perform a NN search.

 Time or space requirements grow exponentially 
in the dimension.

 The dimensionality of images or documents is 
usually in the order of several hundred or more.
 Brute force linear search is the best we can do.

d < 10 to 20
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(r,  )-Nearest Neighbor

 An approximate nearest neighbor should suffice 
in most cases.

 Definition: If for any query point   , there exists  
a point    such that                     , w.h.p return     
such that                                .                             
    

q
p

?

jjq ¡ p0jj · (1 + ²) r
jjq ¡ pjj · r p0

²
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Locality-sensative Hash Families

Definition: A LSH family,                          , has the 
following properties for any              : 

1.  If                        then 

2.  If                        then 

jjp¡ qjj · r

H (c; r; P1; P2)

jjp¡ qjj ¸ cr

q; p 2 S

PrH [h (p) = h (q)] ¸ P1

PrH [h (p) = h (p)] · P2
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Hamming Space

 Definition: Hamming space is the set of all      
binary strings of length    .

 Definition: The Hamming distance between 
two equal length binary strings is the number of 
positions for which the bits are different.             
                                                              

2N

N

k1110101; 1111101kH = 1
k1011101; 1001001kH = 2
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Hamming Space

 Let a hashing family be defined as                      
where     is the      bit of    .                                   
                                                                             
                                                                             
                                                                             
                                                                             
                                                                             
                                                                 
Clearly, this family is locality sensative.

hi(p) = pi
pi ith p

PrH [h (p) = h (q)] = 1¡
kp; qkH
d

PrH [h (p) 6= h (q)] =
kp; qkH
d
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k-bit LSH Functions

 A k-bit locality-sensitive hash function (LSHF) is 

defined as: g (p) = [h1 (p) ; h2 (p) ; : : : ; hk (p)]
T

 Each     is chosen randomly from     .
 Each     results in a single bit.                                     

 

 Pr(similar points collide)                                       
 

 Pr(dissimilar points collide) · P k2

hi H
hi

¸ 1¡
µ
1¡ 1

P1

¶k
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1

LSH Preprocessing

 Each training example is entered into   hash 
tables indexed by independantly constructed      
               .

 Preprocessing Space: 

l

g1; : : : ; gl

O (lN)

...

l2
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LSH Querying

 For each hash table 
 Return the bin indexed by

 Perform a linear search on the union of the 
bins.

...

i, 1 · i · l
gi(q)

q
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Parameter Selection

 Suppose we want to search at most   
examples.  Then setting                                       
                                                                             
                                                                             
                                                                             
                                                                             
                                                                    
ensures that it will succeed with high 
probability.

B

k = log1=P2

µ
N

B

¶
; l =

µ
N

B

¶ log (1=P1)
log (1=P2)
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Experiment 1

 Compare LSH accuracy and performance to 
exact NN search. Examine the influence of: 
 k, the number of hash bits. 
 l, the number of hash tables.
 B, the maximum search length.

 Dataset
 59500 20x20 patches taken from              

motorcycle images.
 Represented as 400-dimensional                   

column vectors



Feb 22, 2008 13

Hash Function

 Convert the feature vectors into binary strings 
and use the Hamming hash functions.

 Given a vector             we can create a unary 
representation for each element     .

                     =     1's followed by                 0's, 
where      is the max coordinate for all points.

                                                                    
 Note that for any two points       :

x 2 Nd
xi

xi (C ¡ xi)
C

p; q

kp; qk = ku (p) ; u (q) kH

UnaryC (xi)

u(x) = UnaryC(x1); : : : ; UnaryC(xd)
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Example Query



 Query         =                                                        
         

 Examples searched: 7,722 of 59,500                  
 

 Result         =                                                        
         

 Actual NNs = 

l = 20, k = 24, B =1
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Average Search Length

 Let B =1
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 Let B =1

l

k

 More hash bits, 
(k), result in 
shorter 
searches.

 More hash 
tables (l), result 
in longer 
searches.
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Average Approximation Error

 Let 
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Average Approximation Error

 Let 
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B =1
 Over hashing 

can result in too 
few candidates 
to return a good 
approximation.

 Over hashing 
can cause 
algorithm to fail.
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Average Approximation Error

 Let 

l
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B =1
 Over hashing 

can result in too 
few candidates 
to return a good 
approximation.

 Over hashing 
can cause 
algorithm to fail.
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Average Approximation Error

 Let 
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Average Approximation Error

 Let B = 250 ¼
p
N
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Experiment 2

 Examine the effect of the approximation on the 
subjective quality of the results.

 Dataset
 D. Nistér and H. Stewénius.                                

Scalable recognition with a                              
vocabulary tree

 2550 sets of 4 images                                   
represented as document-term                                
matrix of the visual words.
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Experiment 2: Issues

 LSH requires a vector representation.
 Not clear how to easily convert a bag of words 

representation into a vector one.
 A binary vector where the presence of each word is 

a bit does not provide a good distance measure.
 Each image has roughly the same number of 

different words from any other image.
 Boostmap?
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Conclusions

 Approximate Nearest Neighbors is neccessary 
for very large high dimensional datasets.

 LSH is a simple approach to aNN.
 LSH requires a vector representation.
 Clear relationship between search length and 

approximation error.
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Tools

 Octave (MATLAB)
 LSH Matlab Toolbox - 

http://www.cs.brown.edu/~gregory/code/lsh/
 Python
 Gnuplot

http://www.cs.brown.edu/~gregory/code/lsh/
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