
Feb 22, 2008 1

Locality-Sensitive Hashing

CS 395T: Visual Recognition and Search

Marc Alban

Feb 22, 2008 2

Nearest Neighbor

 Given a query any point , return the point
closest to .

 Useful for finding similar objects in a database.
 Brute force linear search is not practical for

massive databases.

?

q
q

Feb 22, 2008 3

The “Curse of Dimensionality”

 For , data structures exist that
require sublinear time and near linear space to
perform a NN search.

 Time or space requirements grow exponentially
in the dimension.

 The dimensionality of images or documents is
usually in the order of several hundred or more.
 Brute force linear search is the best we can do.

d < 10 to 20

Feb 22, 2008 4

(r,)-Nearest Neighbor

 An approximate nearest neighbor should suffice
in most cases.

 Definition: If for any query point , there exists
a point such that , w.h.p return
such that .

q
p

?

jjq ¡ p0jj · (1 + ²) r
jjq ¡ pjj · r p0

²

Feb 22, 2008 5

Locality-sensative Hash Families

Definition: A LSH family, , has the
following properties for any :

1. If then

2. If then

jjp¡ qjj · r

H (c; r; P1; P2)

jjp¡ qjj ¸ cr

q; p 2 S

PrH [h (p) = h (q)] ¸ P1

PrH [h (p) = h (p)] · P2

Feb 22, 2008 6

Hamming Space

 Definition: Hamming space is the set of all
binary strings of length .

 Definition: The Hamming distance between
two equal length binary strings is the number of
positions for which the bits are different.

2N

N

k1110101; 1111101kH = 1
k1011101; 1001001kH = 2

Feb 22, 2008 7

Hamming Space

 Let a hashing family be defined as
where is the bit of .

Clearly, this family is locality sensative.

hi(p) = pi
pi ith p

PrH [h (p) = h (q)] = 1¡
kp; qkH
d

PrH [h (p) 6= h (q)] =
kp; qkH
d

Feb 22, 2008 8

k-bit LSH Functions

 A k-bit locality-sensitive hash function (LSHF) is

defined as: g (p) = [h1 (p) ; h2 (p) ; : : : ; hk (p)]
T

 Each is chosen randomly from .
 Each results in a single bit.

 Pr(similar points collide)

 Pr(dissimilar points collide) · P k2

hi H
hi

¸ 1¡
µ
1¡ 1

P1

¶k

Feb 22, 2008 9

1

LSH Preprocessing

 Each training example is entered into hash
tables indexed by independantly constructed
 .

 Preprocessing Space:

l

g1; : : : ; gl

O (lN)

...

l2

Feb 22, 2008 10

LSH Querying

 For each hash table
 Return the bin indexed by

 Perform a linear search on the union of the
bins.

...

i, 1 · i · l
gi(q)

q

Feb 22, 2008 11

Parameter Selection

 Suppose we want to search at most
examples. Then setting

ensures that it will succeed with high
probability.

B

k = log1=P2

µ
N

B

¶
; l =

µ
N

B

¶ log (1=P1)
log (1=P2)

Feb 22, 2008 12

Experiment 1

 Compare LSH accuracy and performance to
exact NN search. Examine the influence of:
 k, the number of hash bits.
 l, the number of hash tables.
 B, the maximum search length.

 Dataset
 59500 20x20 patches taken from

motorcycle images.
 Represented as 400-dimensional

column vectors

Feb 22, 2008 13

Hash Function

 Convert the feature vectors into binary strings
and use the Hamming hash functions.

 Given a vector we can create a unary
representation for each element .

 = 1's followed by 0's,
where is the max coordinate for all points.


 Note that for any two points :

x 2 Nd
xi

xi (C ¡ xi)
C

p; q

kp; qk = ku (p) ; u (q) kH

UnaryC (xi)

u(x) = UnaryC(x1); : : : ; UnaryC(xd)

Feb 22, 2008 14

Example Query



 Query =

 Examples searched: 7,722 of 59,500

 Result =

 Actual NNs =

l = 20, k = 24, B =1

Feb 22, 2008 15

Average Search Length

 Let B =1

l

k

5 10 15 20 25 30

5

10

15

20

25

30

24

22

20

18

16

14

12

10

8

6

4

2

x1000

Feb 22, 2008 16

5 10 15 20 25 30

5

10

15

20

25

30

24

22

20

18

16

14

12

10

8

6

4

2

x1000

Average Search Length

 Let B =1

l

k

 More hash bits,
(k), result in
shorter
searches.

 More hash
tables (l), result
in longer
searches.

Feb 22, 2008 17

Average Approximation Error

 Let

5 10 15 20 25 30

5

10

15

20

25

30

1.11

1.1

1.09

1.08

1.07

1.06

1.05

1.04

l

k

B =1

Feb 22, 2008 18

Average Approximation Error

 Let

5 10 15 20 25 30

5

10

15

20

25

30

1.11

1.1

1.09

1.08

1.07

1.06

1.05

1.04

l

k

B =1
 Over hashing

can result in too
few candidates
to return a good
approximation.

 Over hashing
can cause
algorithm to fail.

Feb 22, 2008 19

Average Approximation Error

 Let

l

k

B =1
 Over hashing

can result in too
few candidates
to return a good
approximation.

 Over hashing
can cause
algorithm to fail.

5 10 15 20 25 30

5

10

15

20

25

30

1.11

1.1

1.09

1.08

1.07

1.06

1.05

1.04

Average search
length = 8000

Feb 22, 2008 20

Average Approximation Error

 Let

5 10 15 20 25 30

5

10

15

20

25

30

1.15

1.14

1.13

1.12

1.11

1.1

1.09

1.08

l

k

B = 5500 ¼ N

ln N

Feb 22, 2008 21

Average Approximation Error

 Let B = 250 ¼
p
N

5 10 15 20 25 30

5

10

15

20

25

30

1.6

1.55

1.5

1.45

1.4

1.35

1.3

1.25

l

k

Feb 22, 2008 22

Experiment 2

 Examine the effect of the approximation on the
subjective quality of the results.

 Dataset
 D. Nistér and H. Stewénius.

Scalable recognition with a
vocabulary tree

 2550 sets of 4 images
represented as document-term
matrix of the visual words.

Feb 22, 2008 23

Experiment 2: Issues

 LSH requires a vector representation.
 Not clear how to easily convert a bag of words

representation into a vector one.
 A binary vector where the presence of each word is

a bit does not provide a good distance measure.
 Each image has roughly the same number of

different words from any other image.
 Boostmap?

Feb 22, 2008 24

Conclusions

 Approximate Nearest Neighbors is neccessary
for very large high dimensional datasets.

 LSH is a simple approach to aNN.
 LSH requires a vector representation.
 Clear relationship between search length and

approximation error.

Feb 22, 2008 25

Tools

 Octave (MATLAB)
 LSH Matlab Toolbox -

http://www.cs.brown.edu/~gregory/code/lsh/
 Python
 Gnuplot

http://www.cs.brown.edu/~gregory/code/lsh/

Feb 22, 2008 26

References

 'Fast Pose Estimation with Parameter Senative Hashing' –
Shakhnarovich et al.

 'Similarity Search in High Dimensions via Hashing' – Gionis et al.

 'Object Recognition Using Locality-Sensitive Hashing of Shape
Contexts' - Andrea Frome and Jitendra Malik

 'Nearest neighbors in high-dimensional spaces', Handbook of
Discrete and Computational Geometry – Piotr Indyk

 Algorithms for Nearest Neighbor Search -
http://simsearch.yury.name/tutorial.html

 LSH Matlab Toolbox - http://www.cs.brown.edu/~gregory/code/lsh/

http://simsearch.yury.name/tutorial.html
http://www.cs.brown.edu/~gregory/code/lsh/

