Shape Contexts

Newton Petersen 4/25/2008

"Shape Matching and Object Recognition Using Shape Contexts", Belongie et al. PAMI April 2002

Agenda

■ Study Matlab code for computing shape context

- Look at limitations of descriptor
- Explore effect of noise
- Explore rotation invariance
- Explore effect of locality

■ Explore Thin Plate Spline

Problem: How can we tell these are

 same shape?

Shape Context - Step 1 - Distance

Coordinates on shape:
(1) $0.2000 \quad 0.5000$
(2) $0.4000 \quad 0.5000$
(3) $0.3000 \quad 0.4000$
(4) $0.1500 \quad 0.3000$
(5) $0.3000 \quad 0.2000$
(6) $0.4500 \quad 0.3000$

Compute Euclidean distance from each point to all others:

0	0.2000	0.1414	0.2062	0.3162	0.3202
0.2000	0	0.1414	0.3202	0.3162	0.2062
0.1414	0.1414	0	0.1803	0.2000	0.1803
0.2062	0.3202	0.1803	0	0.1803	0.3000
0.3162	0.3162	0.2000	0.1803	0	0.1803
0.3202	0.2062	0.1803	0.3000	0.1803	0

Then normalize by mean distance...

Shape Context - Step 2 - Bin Distances

Normalized distances between each point:

0	1.0623	0.7511	1.0949	1.6796	1.7004
1.0623	0	0.7511	1.7004	1.6796	1.0949
0.7511	0.7511	0	0.9575	1.0623	0.9575
1.0949	1.7004	0.9575	0	0.9575	1.5934
1.6796	1.6796	1.0623	0.9575	0	0.9575
1.7004	1.0949	0.9575	1.5934	0.9575	0

Create log distance scale for normalized distances (closer = more discriminate):

0.1250	0.2500	0.5000	1.0000	2.0000

Create distance histogram: Iterate for each scale incrementing bins when dist <

1	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1

5	1	2	1	1	1
1	5	2	1	1	1
2	2	5	2	1	2
1	1	2	5	2	1
1	1	1	2	5	2
1	1	2	1	2	5

Bottom Line: Bins with higher numbers describe points closer together

Shape Context - Step 3 - Angles

Coordinates on shape:
A (1) 0.20000 .5000
\checkmark (2) $0.4000 \quad 0.5000$
(3) $0.3000 \quad 0.4000$
(4) $0.1500 \quad 0.3000$
(5) $0.3000 \quad 0.2000$
(6) $0.4500 \quad 0.3000$

Compute angle between all points (0 to 2π):

0	0	5.4978	4.4674	5.0341	5.6084
3.1416	0	3.9270	3.8163	4.3906	4.9574
2.3562	0.7854	0	3.7296	4.7124	5.6952
1.3258	0.6747	0.5880	0	5.6952	0
1.8925	1.2490	1.5708	2.5536	0	0.5880
2.4669	1.8158	2.5536	3.1416	3.7296	0

Shape Context - Step 4 - Quantize Angles

Binning angles is slightly different than distance:

0	0	5.4978	4.4674	5.0341	5.6084
3.1416	0	3.9270	3.8163	4.3906	4.9574
2.3562	0.7854	0	3.7296	4.7124	5.6952
1.3258	0.6747	0.5880	0	5.6952	0
1.8925	1.2490	1.5708	2.5536	0	0.5880
2.4669	1.8158	2.5536	3.1416	3.7296	0

Simple Quantization:

theta_array_q = 1+floor(theta_array_2/(2*pi/nbins_theta))

1	1	6	5	5	6
4	1	4	4	5	5
3	1	1	4	5	6
2	1	1	1	6	1
2	2	2	3	1	1
3	2	3	4	4	1

Shape Context - Step 5 - Combine

- R and theta numbers are combined to one descriptor (slightly tricky Matlab code)
- Captures number of points in each R, theta bin
- Effectively turned N points into N*NumRadialBins*NumThetaBins = Rich Descriptor

100021000001000000000000100000
... for each point
... relative to each point and not a global origin

Matching - Cost Matrix

- Calculate 'cost' of matching each point to every other point
- Cost of matching point i to point $j=$ Chi-squared similarity between row i and row j in shape context descriptor

$$
C_{i j} \equiv C\left(p_{i}, q_{j}\right)=\frac{1}{2} \sum_{k=1}^{K} \frac{\left[h_{i}(k)-h_{j}(k)\right]^{2}}{h_{i}(k)+h_{j}(k)}
$$

Matching - Additional Cost Terms

- Easy to add in other terms
- For 'real' images, possible to add in other measures of difference between point i and j
\square Surrounding Color Difference
\square Surrounding Texture Difference
\square Surrounding Brightness Difference
\square Tangent Angle Difference

Matching

- Find pairing of points that leads to least total cost
- Hungarian Method
$\square \mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$

Cost of matching point 1 of shape 1 to point 2 of shape 2
$\left(\begin{array}{ll}\text { a1 } & \text { a2 } \\ \text { b1 } & \text { b2 }\end{array}\right)$
$H(\pi)=\sum_{i} C\left(p_{i}, q_{\pi(i)}\right)$

So what Happened Here?

- Inexact rotation applied

Much better...

Systematic Rotation Experiment

- Rotate through 2pi/40 increments
- Quite sensitive to rotation

- Even if 'shape context distance’ low

Providing Rotation Invariance

■ Relation between tangent angles stays the same as points rotate

Rotation Invariance

- Use tangent angle as positive x axis for each point (as suggested in paper)

Rotation Invariance

- Do you really want 6 and 9 matched?
- Depends on the shape...

Locality issues - Matching Example

What could produce 'incorrect' descriptors?

- As we just saw,
\square Rotation that puts points in different relative bins
\square Different numbers of points in different regions of shapes
- Any important distinction that ends up in the same bin is effectively lost
\square Chance of happening increases with distance
- Conversely any nearby feature relation that is unimportant is granted a distinction in the descriptor

More realistic locality example

Outer Radius = 1

- Smaller radius creates more outliers that can match with points far away if nothing available locally

Effects of noise

- Not really all that good at dealing with noise (at least not this much noise)

Thin Plate Spline Warping

$$
I_{f}=\iint_{\mathbb{R}^{2}}\left(\frac{\partial^{2} f}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{2} d x d y
$$

■ Meant to model transformations that happen when bending metal
■ Picks a warp that minimizes the 'bending energy' above and minimizes shape distance

Bend a fish?

"Shape Matching and Object
Recognition Using Shape Contexts",
Belongie et al. PAMI April 2002

TPS

Added Noise Points

0 •Helps absorb small local differences by having smoothing effect
(regularization parameter) -Helps smooth edge
sampling jitter
-Provides small degree of rotation invariance

- Helps provide some immunity to noise by bunching noisy points together

Conclusion

■ Shape context => binning of spatial relationships between points

- Good for 'clean' shapes
\square Examples from paper => handwriting, trademarks
- Struggles with clutter noise
\square Thin Plate Spline helps quite a bit

Discussion

- How does this compare to other descriptors?
- What would work better with Maysam's viruses?
- Any ideas for making descriptor know what geometrical relationships are most important? (like active appearance models)
- Any ideas for improving runtime

