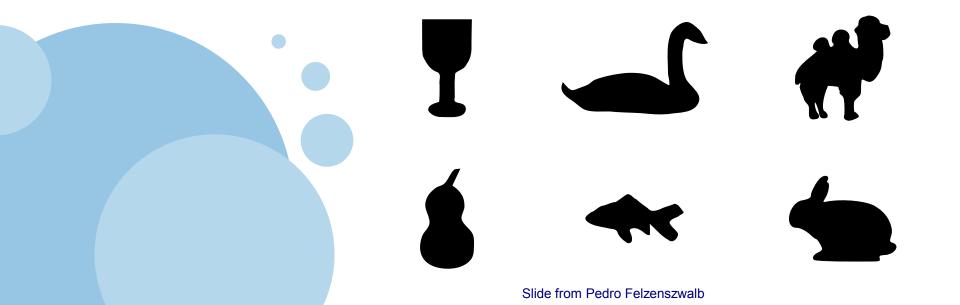


Shape Matching

Shape-Based Recognition

- Humans can recognize many objects
 based on shape alone
- Fundamental cue for many object categories
- Invariant to photometric variation.

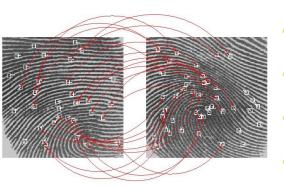


Shapes vs. Intensity Values

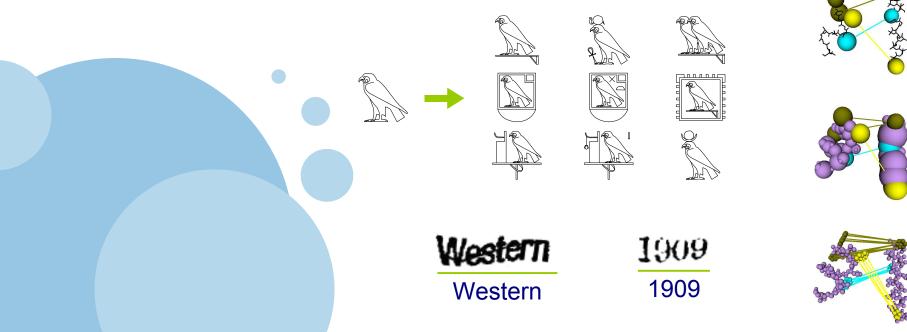
Similar to a human in terms of shape, but very different in terms of pixel values.

Images from Belongie et al.

Applications

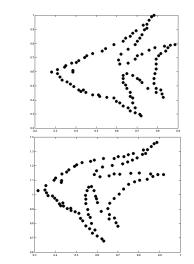


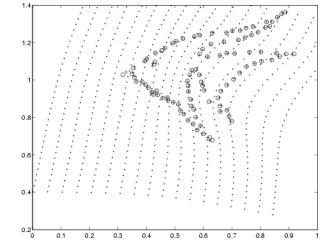
- Shape retrieval
 - Recognizing object categories
 - Fingerprint identification
- Optical Character Recognition (OCR)
- Molecular-biology



Geometric Transformations

- Often in matching images are allowed to undergo some geometric transformation
- Related but not identical shapes can be deformed into alignment using simple coordinate transformations
- Find the transformations of one image that produce good matches to the other image

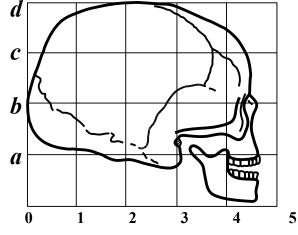




Images from Belongie et al.

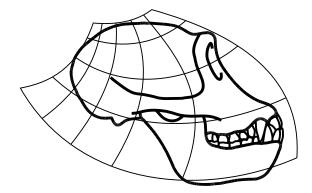
Biological Shape

- D'Arcy Thompson: *On Growth and Form*, 1917
 - studied transformations between shapes of organisms



Intro

Fig. 177. Human skull



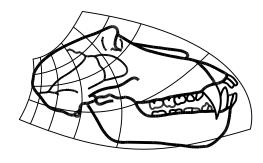
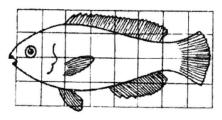
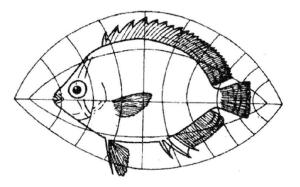


Fig. 179. Skull of chimpanzee.

Fig. 180. Skull of baboon.

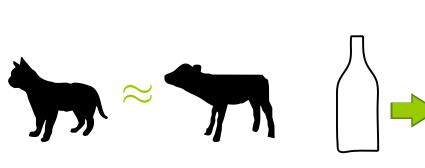




Slide from Belongie et al.

Related Problems

- Shape representation and decomposition
- Finding a set of correspondences between shapes
- Transforming one shape into another
- Measuring the similarity between shapes
- Shape localization and model alignment
- Finding a shape similar to a model in a cluttered image



Slide from Pedro Felzenszwalb

References

- Shape Matching and Object Recognition Using Shape Contexts, by S. Belongie, J. Malik, and J. Puzicha. Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2002.
- Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA, by G. Mori and J. Malik, in Proceedings IEEE Computer Vision and Pattern Recognition (CVPR), 2003.
- Using the Inner-Distance for Classification of Articulated Shapes, by H. Ling and D. Jacobs, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
- **Comparing Images Using the Hausdorff Distance**, by D. Huttenlocher, G. Klanderman, and W. Rucklidge, Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1993.
- A Boundary-Fragment-Model for Object Detection, by A. Opelt, A. Pinz, and A. Zisserman, Proceedings of the European Conference on Computer Vision (ECCV), 2006.
 - Hierarchical Matching of Deformable Shapes, by P. Felzenszwalb and J. Schwartz, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007

Outline

- Shape Distance and Correspondence
 - Hausdorff Distance
 - Shape Context
 - Inner Distance
- Hierarchical Approach
 - Hierarchical Matching
- Machine Learning Approach
 - Boundary Fragment Model

Comparing Images Using the Hausdorff Distance

1993

D. Huttenlocher, G. Klanderman, and W. Rucklidge

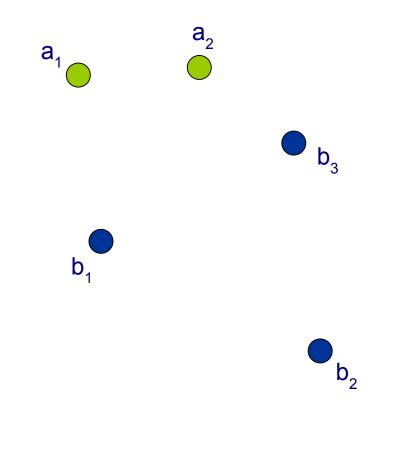
Overview

- Use Hausdorff distance to compare images to a model
- Fast and simple approach
- Tolerant of small position errors
- Model is only allowed to translate with respect to the image
- Can be extended to allow rotation and scale

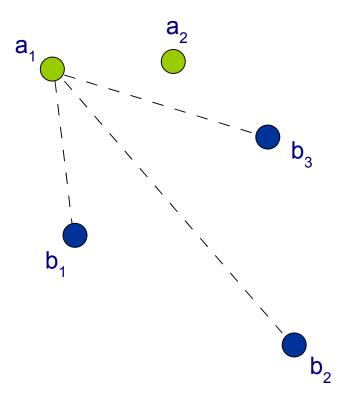
- A means of determining the resemblance of one point set to another
- Examines the fraction of points in one set that lie near points in the other set

$$H(A,B) = \max \left\{ h(A,B), h(B,A) \right\}$$
$$h(A,B) = \max_{a \in A} \left\{ \min_{b \in B} \left\{ d(a,b) \right\} \right\}$$

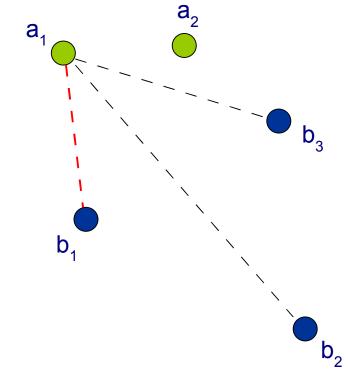
Given two sets of points A and B, find h(A,B)



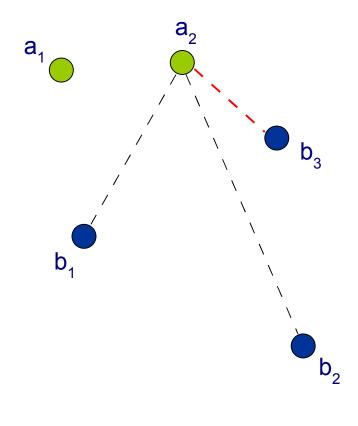
Compute the distance between a_1 and each b_i

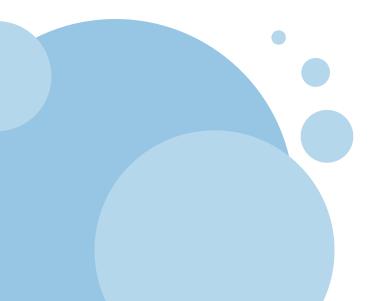


Keep the shortest

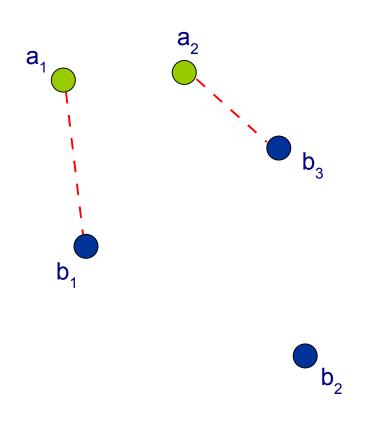


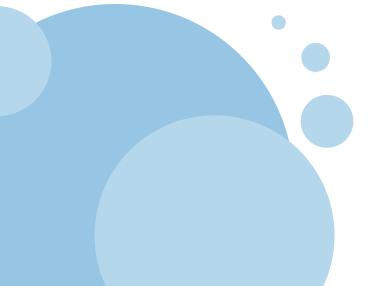
Do the same for a_2



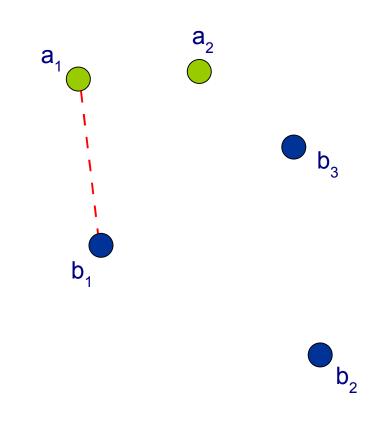


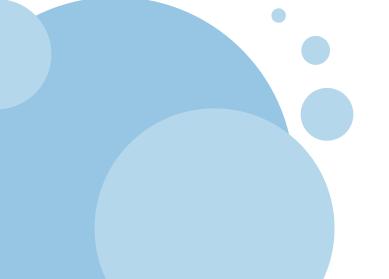
Find the largest of these two distances



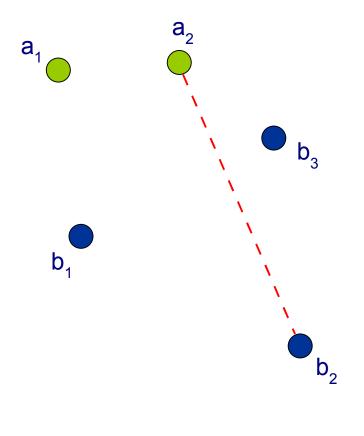


This is h(A,B)



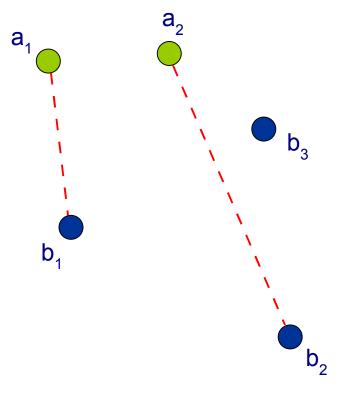


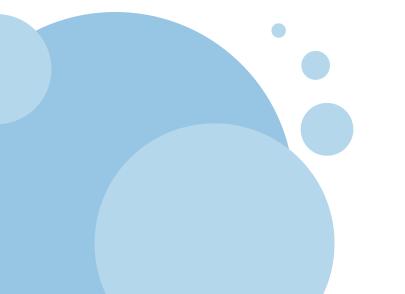
This is h(B,A)



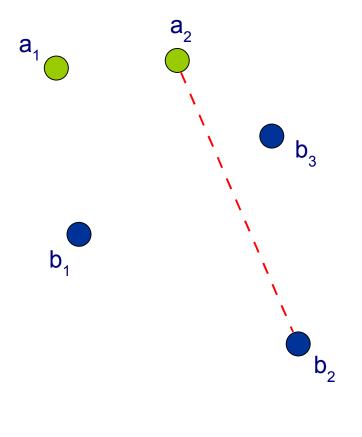


H(A,B) = max(h(A,B),h(B,A))





This is H(A,B)



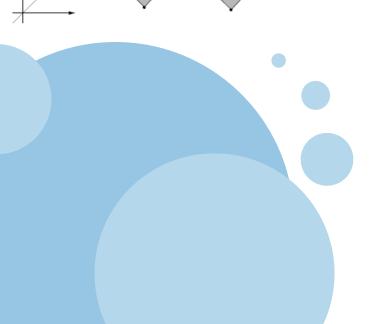
Generalization

- Hausdorff distance is very sensitive to even one outlier in A or B
- Use kth ranked distance instead of the maximal distance
- Match if $h_k(A, B) < \delta$
 - k is how many points of the model need to be near points of the image
 - δ is how near these points need to be

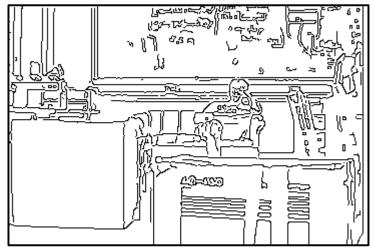
$$h_k(A,B) = \underset{a \in A}{\mathrm{k}^{\mathrm{th}}} \left\{ \min_{b \in B} \left\{ d(a,b) \right\} \right\}$$

Distance Transforms

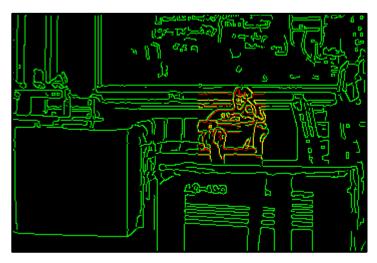
- Processing can be sped up by probing a precomputed Voronoi surface
- A Voronoi surface defines the distance from any location in B to the nearest point
 - Can be efficiently computed using dynamic programming in linear time



Example: Matching



Edges



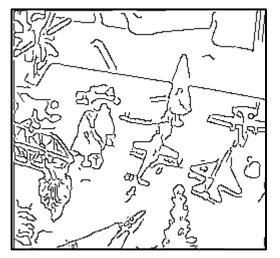
Match

Model

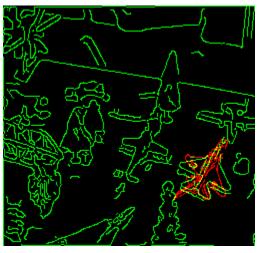
Example: Matching

Model

Model



Edges



Match

Shape Context

Outline

- Shape Distance and Correspondence
 - Hausdorff Distance
 - Shape Context
 - Inner Distance
- Hierarchical Approach
 - Hierarchical Matching
- Machine Learning Approach
 - Boundary Fragment Model

Shape Matching and Object Recognition Using Shape Contexts

2002

S. Belongie, J. Malik, and J. Puzicha

Shape Context

Overview

- 1) Solve for correspondences between points on the two shapes
 - Using shape contexts
- 2) Use the correspondences to estimate an aligning transform
 - Using regularized thin-plate splines
- 3) Compute the distance between the two shapes

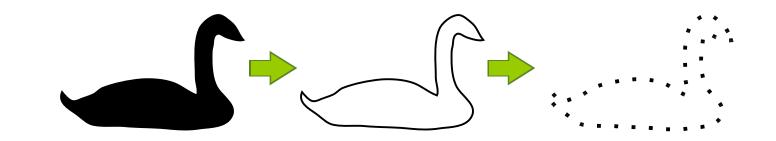
Shape Context

Related Work: Deformable Templates

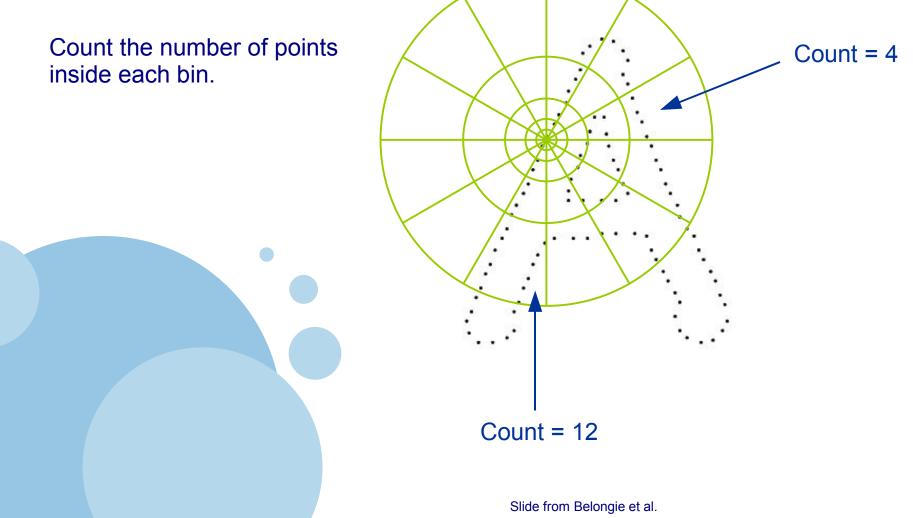
- The Representation and Matching of Pictorial Structures, by Fischler & Elschlager (1973)
- Structural image restoration through deformable templates, by Grenander et al. (1991)
- **Deformable Templates for Face Recognition**, by Yuille (1991)
- Distortion invariant object recognition in the dynamic linkarchitecture, by von der Malsburg (1993)

Slide from Belongie et al.

• A shape is represented by a set of points sampled from the edges of the object

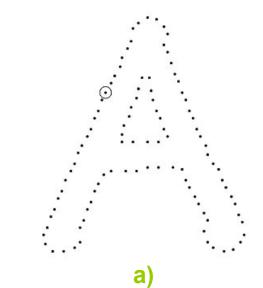


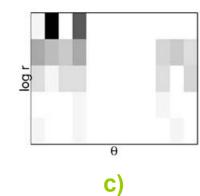
Shape Context Shape Context: Log-Polar Histograms

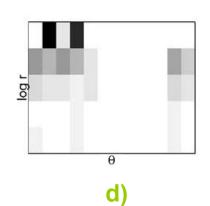


Shape Context

Example: Shape Contexts







Images from Belongie et al.

Shape Context

Point Correspondences

• Compute matching costs $C(p_i, p_j)$ using Chi Squared distance:

$$C(p_{i}, p_{j}) = \frac{1}{2} \sum_{k=1}^{K} \frac{\left[h_{i}(k) - h_{j}(k)\right]^{2}}{h_{i}(k) + h_{j}(k)}$$

• Minimize the total cost of matching, such that matching is 1-to-1

$$H\left(\pi\right) = \sum_{i} C\left(p_{i}, q_{\pi\left(i\right)}\right)$$

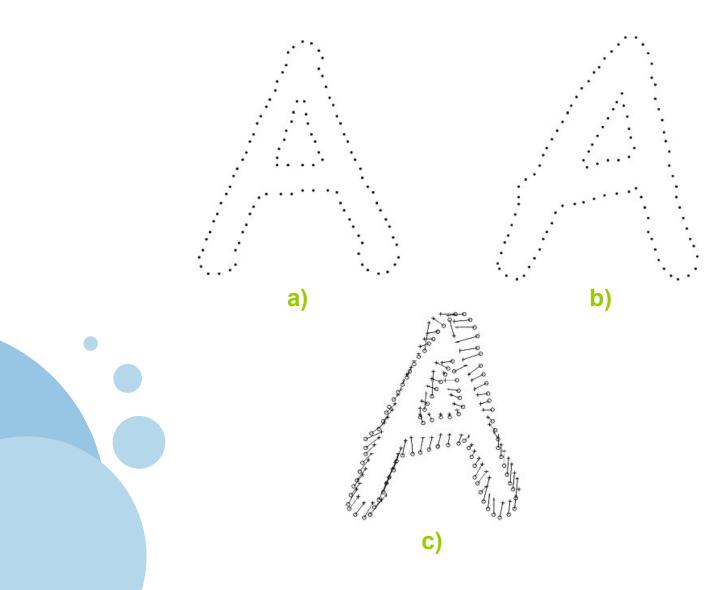
[Jonker & Volgenant, 1987]

Slide from Belongie et al.

Example: Point Correspondences

Shape

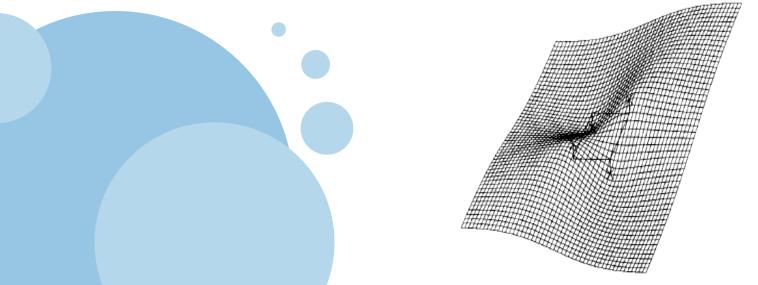
Context

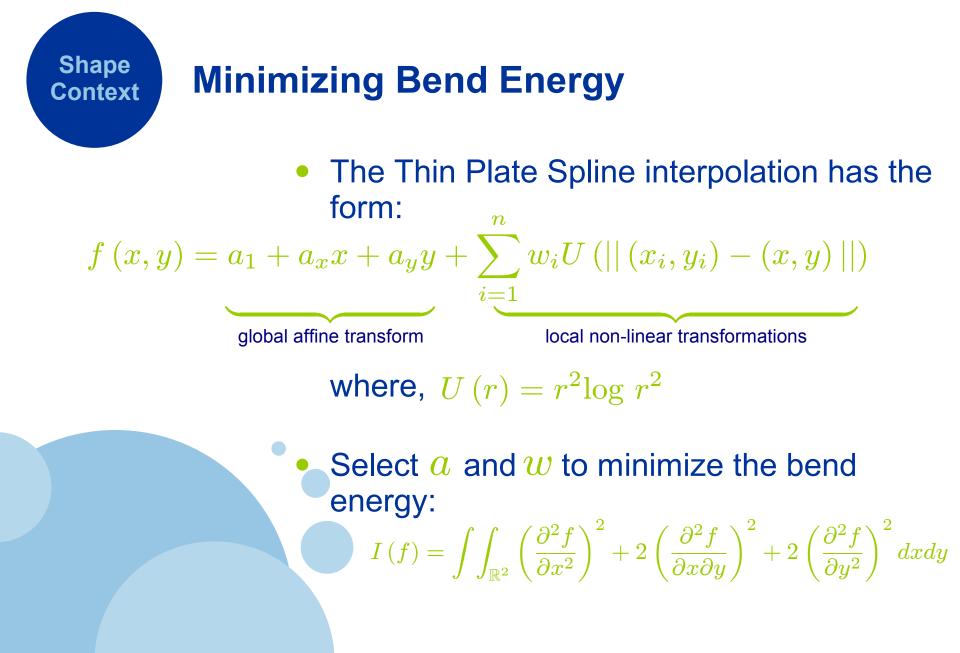


Shape Context

Thin Plate Spline Model

- The name "thin plate spline" refers to a physical analogy involving the bending of a thin sheet of metal
- The 2D generalization of the 1D cubic spline
- Contains the affine model as a special case

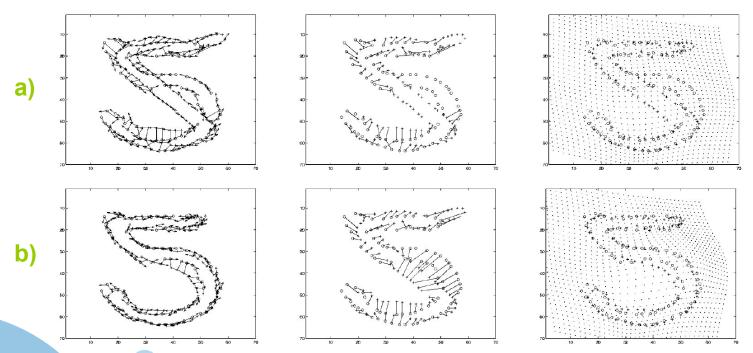




Example: Matching and Transformation

Shape

Context



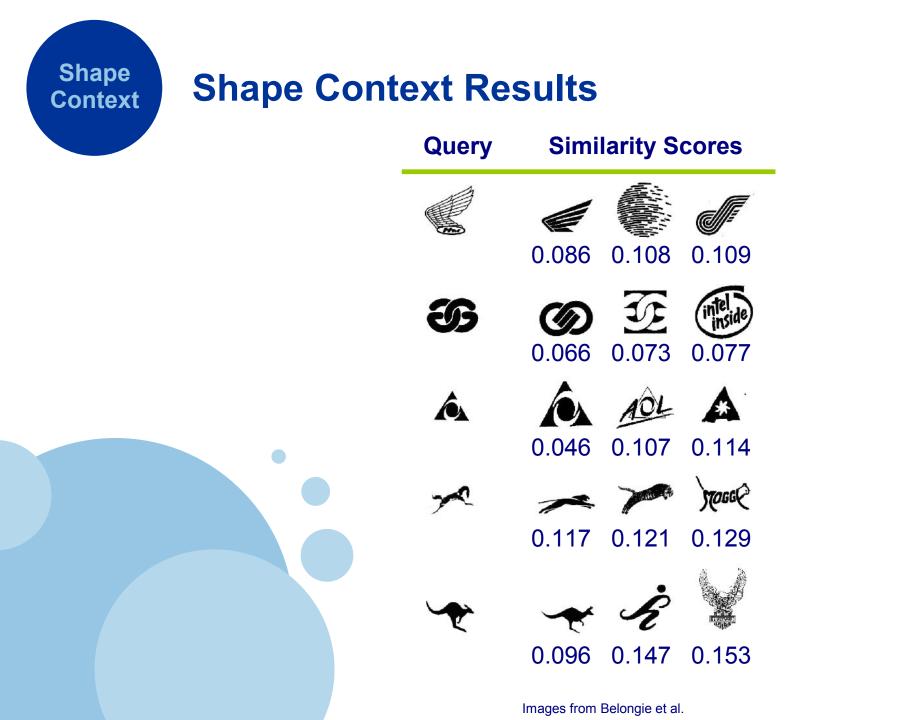
Images from Belongie et al.

Shape Context

Terms in Similarity Score

- Shape Context difference, \mathcal{D}_{sc}
- Local Image appearance difference, \mathcal{D}_{ac}
 - Orientation
 - Gray-level correlation in Gaussian window
 - ... (many more possible)
- Bending energy, \mathcal{D}_{be}

 $\mathcal{D}_{sc} + 1.6 * \mathcal{D}_{ac} + 0.3 * \mathcal{D}_{be}$



Outline

- Shape Distance and Correspondence
 - Hausdorff Distance
 - Shape Context
 - Inner Distance
- Hierarchical Approach
 - Hierarchical Matching
- Machine Learning Approach
 - Boundary Fragment Model

Using the Inner-Distance for Classification of Articulated Shapes

2005

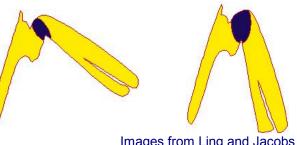
H. Ling and D. Jacobs

Overview

- Its difficult to capture the part structure of complex shapes with existing shape matching methods
- Replace euclidean distance with the innerdistance
 - Insensitive to shape articulations
 - Often more discriminative for complex shapes
- An extension to shape contexts

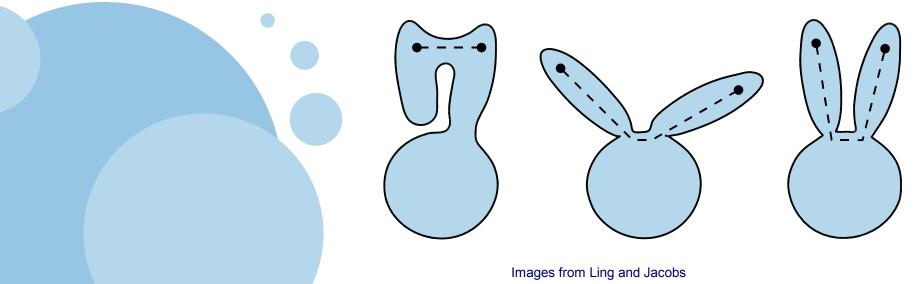
Model of Articulated Objects

- 1) An object can be decomposed into a number of parts
- 2) Junctions between parts are relatively small with respect to the parts they connect
- 3) Articulation on the object is rigid with respect to any part, but can be non-rigid on the junctions
- 4) An object that has been articulated can be articulated back to its original form

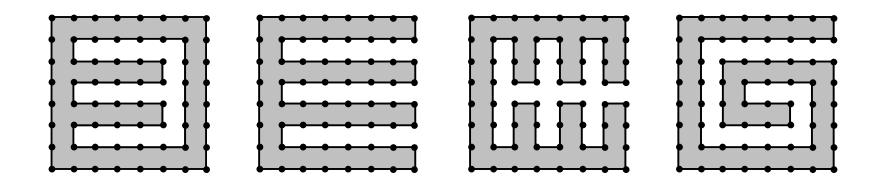


The Inner-Distance

- The length of the shortest path between landmark points within the shape silhouette
- For convex shapes, the inner-distance reduces to the Euclidean distance
- Inner-Distance changes only due do deformations of the junctions



Inner-Distance vs Euclidean Distance



Images from Ling and Jacobs

Computing the Inner-Distance

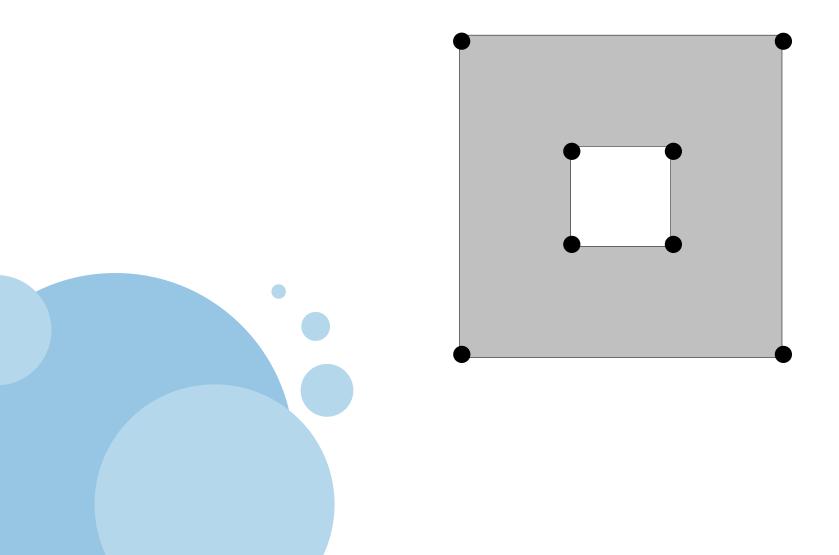
1) Build a graph on the sampled points

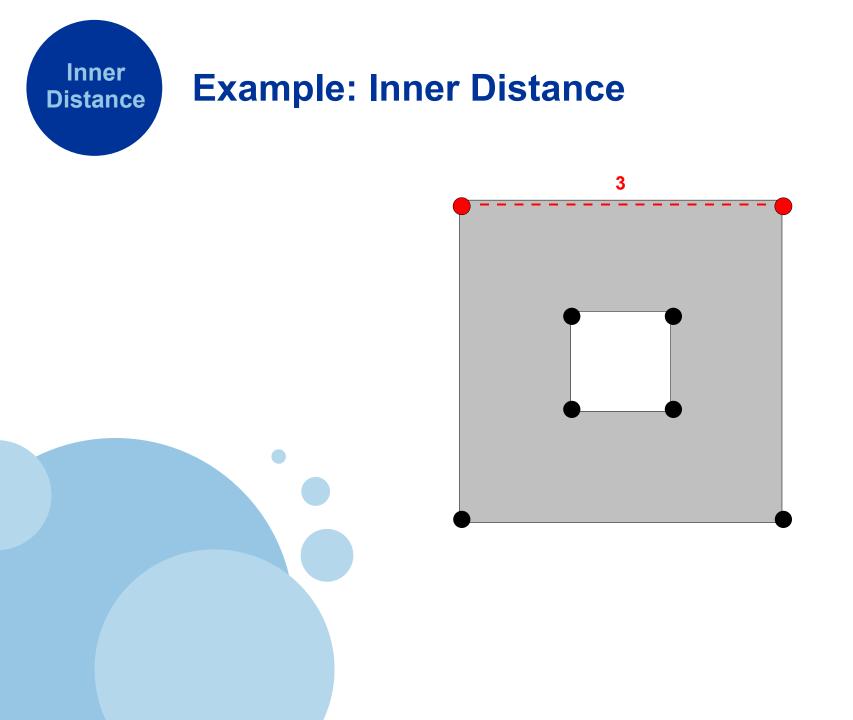
- For each pair of points x,y.
 - 1. If line segment between them existed entirely within the object
 - 2. Build an edge connecting x and y with weight

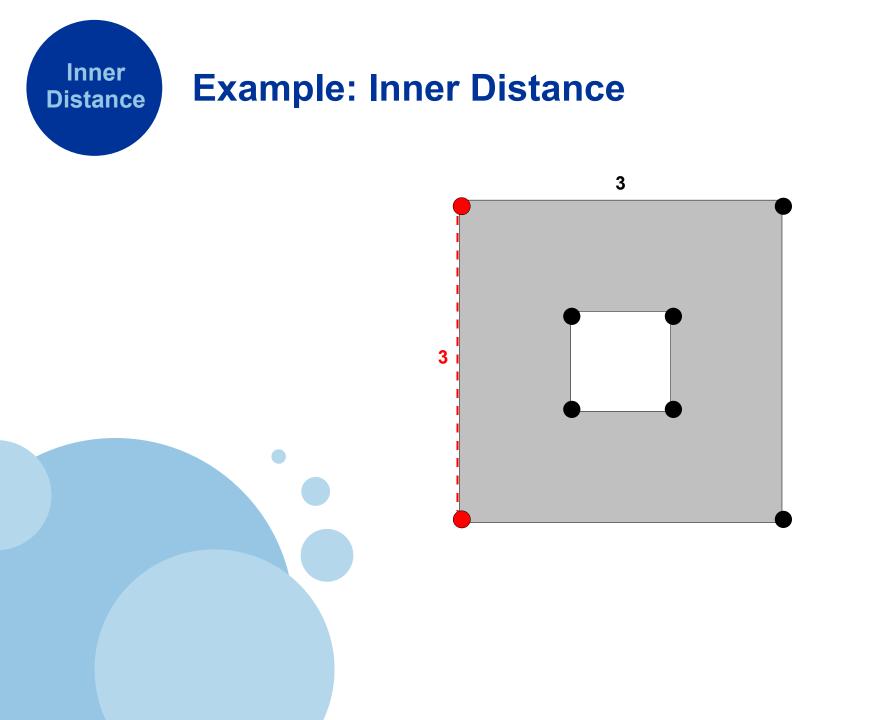
w = ||x - y||

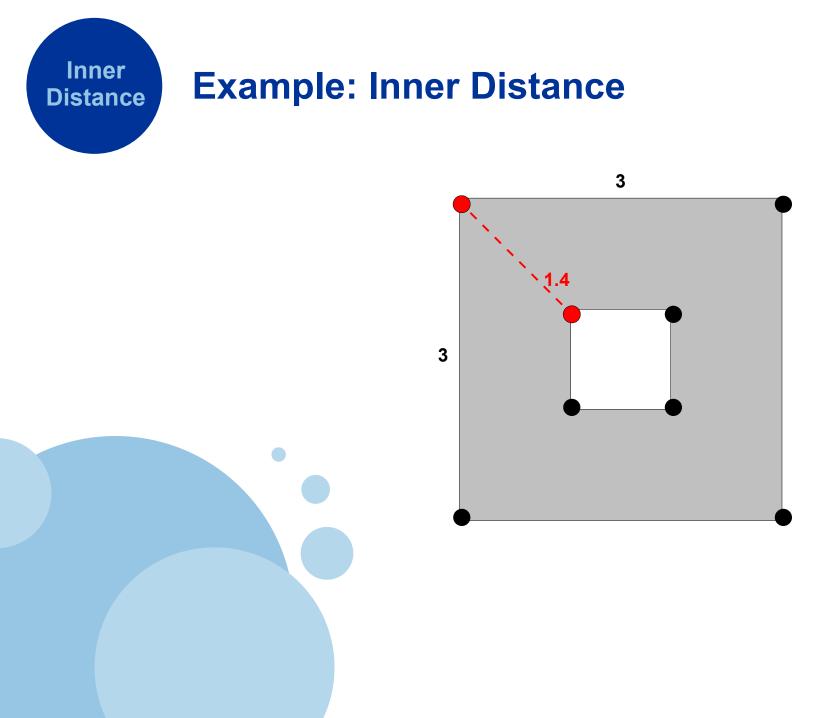
2) Apply a shortest path algorithm on the graph

Inner Distance Example: Inner Distance









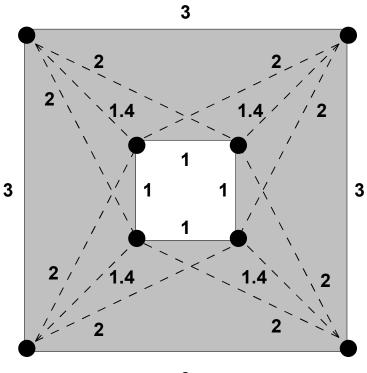
Inner **Example: Inner Distance** Distance 3 3

Inner **Example: Inner Distance** Distance 3 3

Example: Inner Distance

Inner

Distance

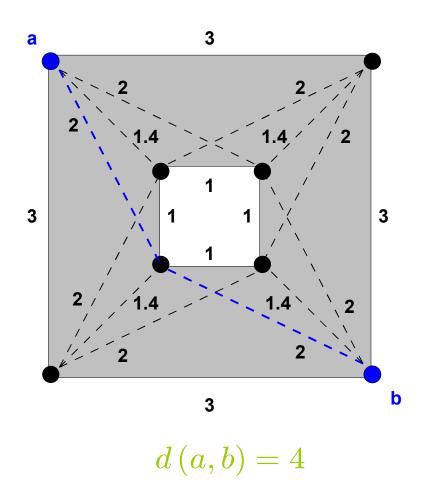


3

Example: Inner Distance

Inner

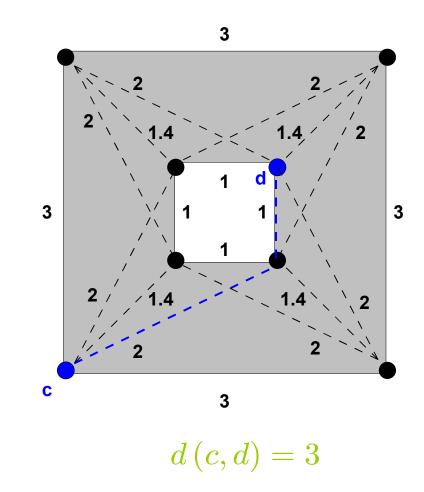
Distance



Example: Inner Distance

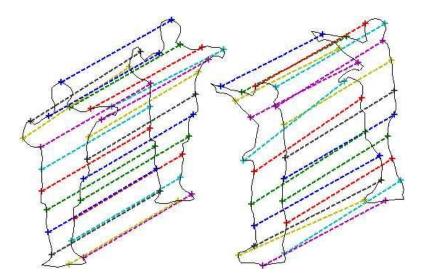
Inner

Distance



An Extension to Shape Contexts

- Redefine the bins with inner-distance
 - Euclidean distance is replaced directly with the inner-distance

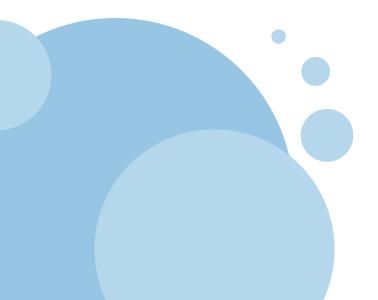


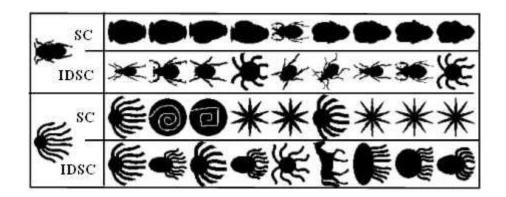
Images from Ling and Jacobs

Results (MPEG7 dataset)

Algorithm	CSS	Visual Parts	SC
Score	75.44%	76.45%	76.51%

Algorithm	Curve Edit	Gen. Model	IDSC
Score	78.17%	80.03%	85.40%





Outline

- Shape Distance and Correspondence
 - Hausdorff Distance
 - Shape Context
 - Inner Distance
- Hierarchical Approach
 Hierarchical Matching
- Machine Learning Approach
 - Boundary Fragment Model

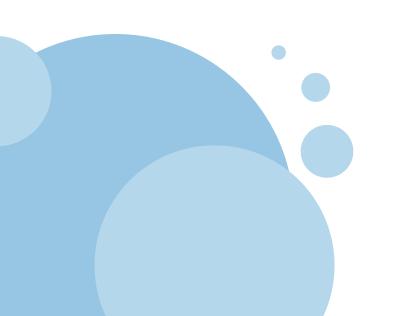
Hierarchical Matching of Deformable Shapes

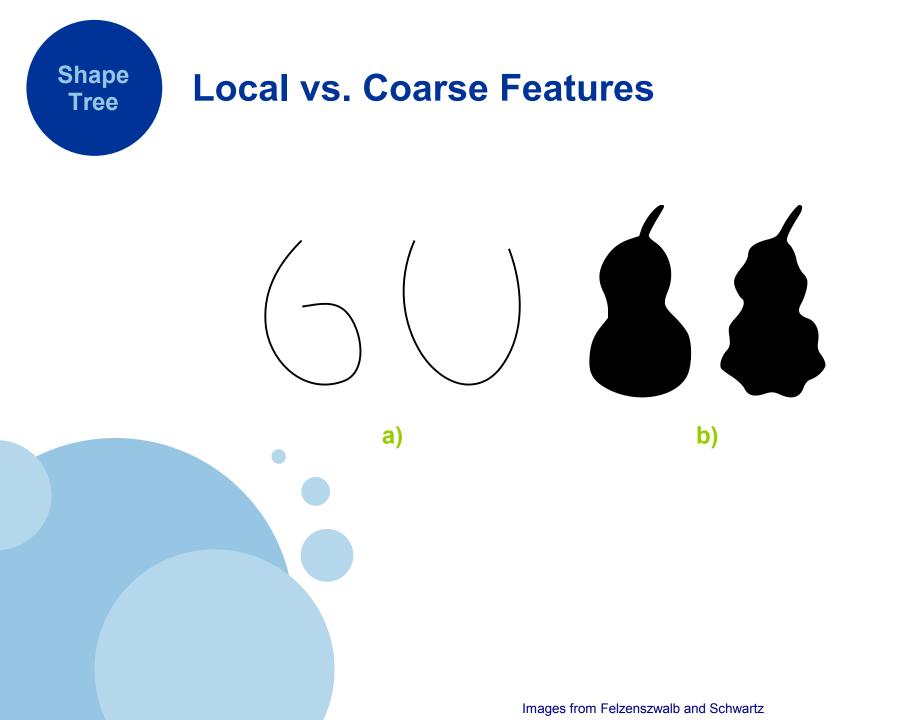
2007

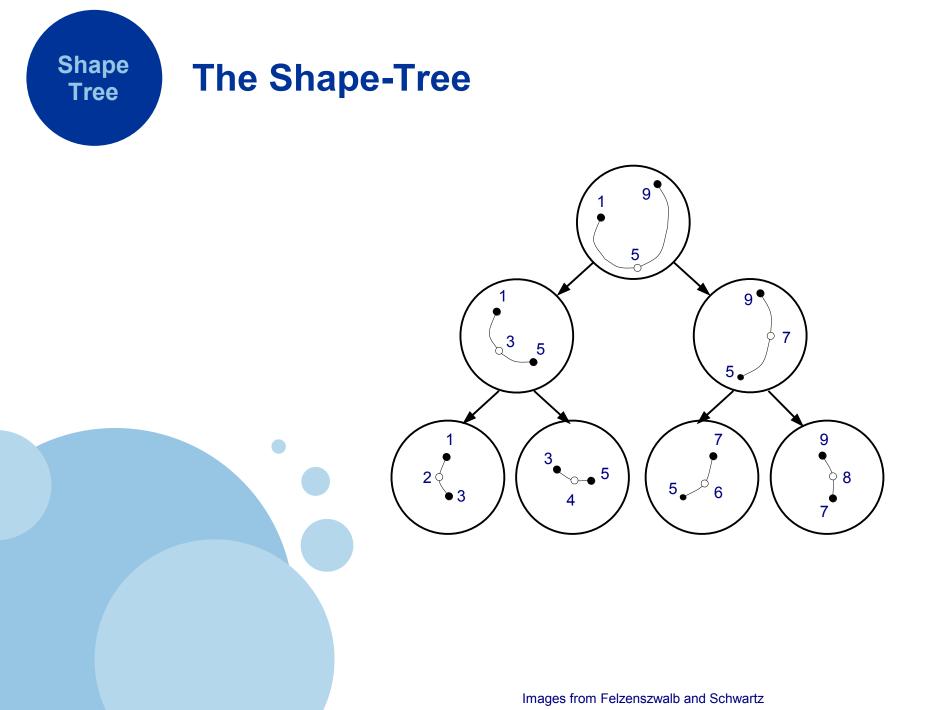
P. Felzenszwalb and J. Schwartz

Overview

- Use hierarchical representation to capture shape information at multiple levels of resolution
- Capture global properties by compositing adjacent curve matches

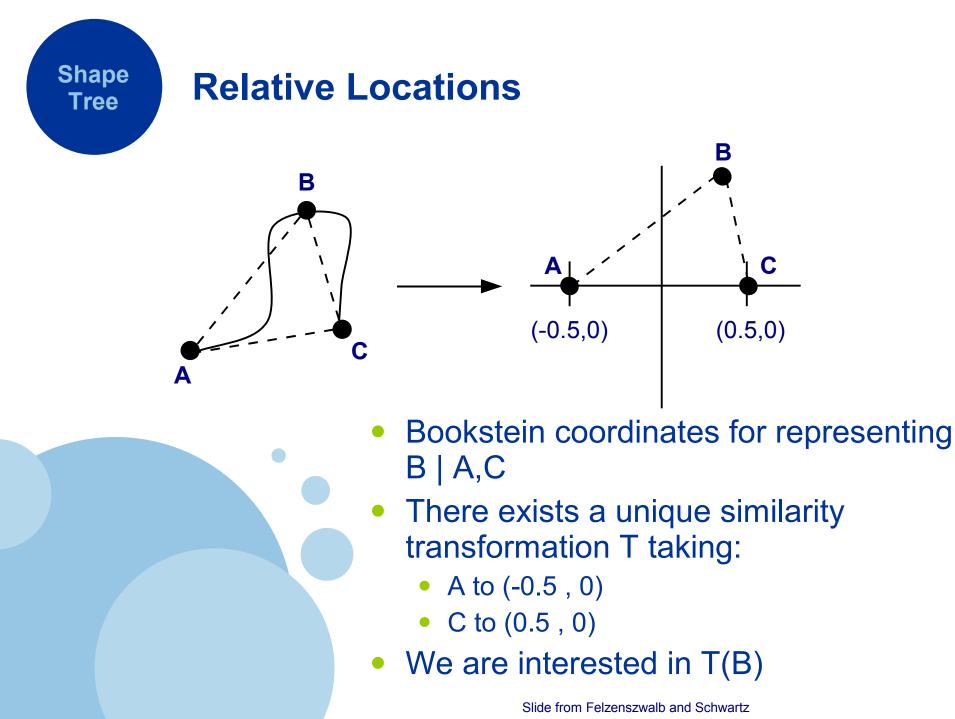






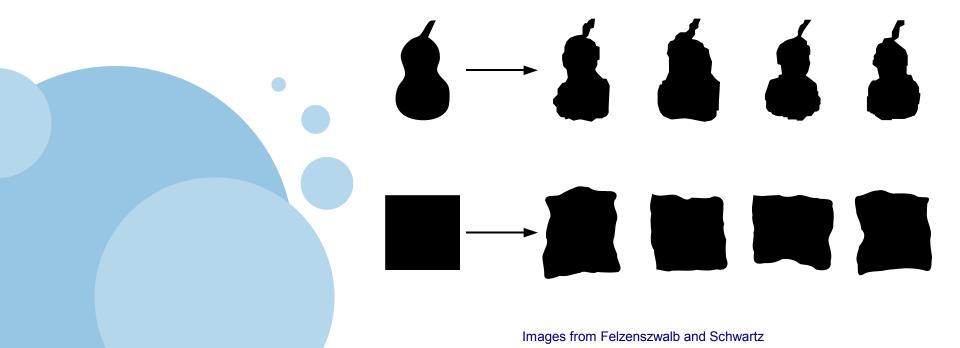
Bookstein Coordinates

- Encode the relative positions of 3 points as a point in the plane
- A simple way to represent the relative location of a midpoint in the shape tree
- Given 3 points there exists a unique similarity transformation which maps:
 - P₁ to (-0.5, 0)
 - P₂ to (0.5, 0)
 - P₃ to the Bookstein coordinate



Deformation model

- Independently perturb relative locations stored in a shape-tree
 - Reconstructed curve is perceptually similar to original
 - Local and global properties are preserved



Distance Between Curves

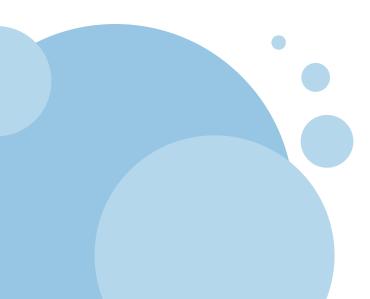
- Given curves A and B
- Can't compare shape-trees for A and B built separately
- Fix shape-tree for A and look for map from points in A to points in B that doesn't deform the shape-tree much
- Efficient $\mathcal{O}(nm^3)$ DP algorithm, where

(n = |A|, m = |B|)

Recognition Results

Swedish Leaf Dataset (15 species with 75 examples each)

Nearest Neighbor Classification			
Algorithm	Shape-Tree	Inner-Distance	Shape Context
Score	96.28%	94.13%	88.12%



MPEG7 Dataset

Bullseye Score			
Algorithm	Shape-Tree	Inner-Distance	
Score	87.70%	85.40%	

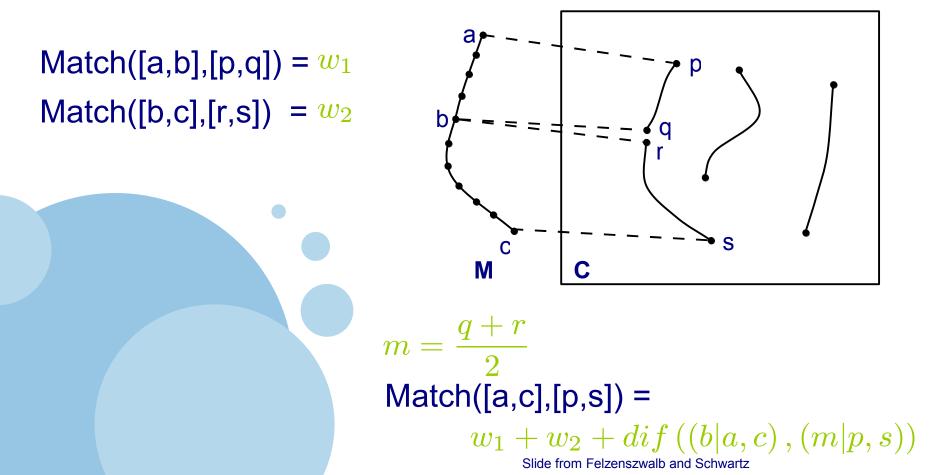
Algorithm	Curve Edit	Shape Context
Score	78.14%	76.51%

Matching in Cluttered Images

- Given *M* the model curve and *C* the set of curves in the image
- Use DP to match each curve in *C* to every subcurve of *M*
 - Running time is linear on total length of image contours and cubic in the length of the model
- Stitch partial matchings together to form longer matchings
 - Use compositional rule

Shape Tree Compositional Rule

If $||q - r|| < \tau$ compose Match([a,b], [p,q]) and Match([b,c], [r,s])



Example: Detection

Input Image

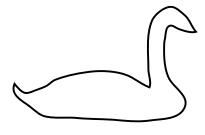
Edge Map

Contours

Detection

Images from Felzenszwalb and Schwartz

Results



Model

Images from Felzenszwalb and Schwartz

Boundary Fragment Model

Outline

- Shape Distance and Correspondence
 - Hausdorff Distance
 - Shape Context
 - Inner Distance
- Hierarchical Approach
 - Hierarchical Matching
- Machine Learning Approach
 - Boundary Fragment Model

A Boundary-Fragment-Model for Object Detection

2006

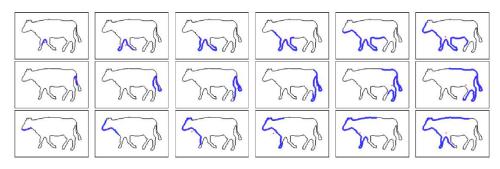
A. Opelt, A. Pinz, and A. Zisserman

Overview

- Object class detection using object boundaries instead of salient image features
- A learning technique to extract discriminating boundary fragments
- Use boosting to select discriminative combinations of boundary fragments (weak detectors) to form a strong detector

Learning Boundary Fragments

- Given
 - A training image set with the object delineated by a bounding box
 - A validation image set labeled with whether the object is absent or present, and the object's centroid
- From the edges of the training images identify fragments that:
 - Discriminate objects from the target category from other objects
 - Give a precise estimate of the object centroid



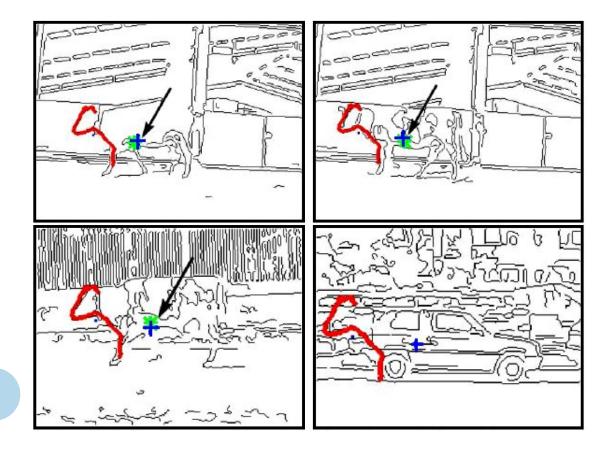
Example: Good Boundary Fragment

+ = Estimated Centroid

★ = Correct Centroid

Boundary

Fragment Model



Images from Opelt et al

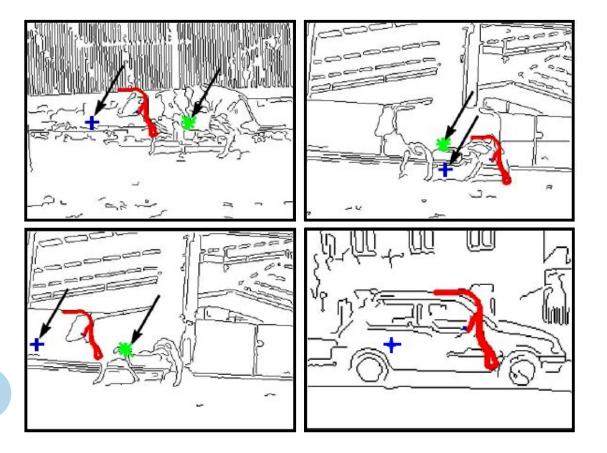
Example: Poor Boundary Fragment

= Estimated Centroid

★ = Correct Centroid

Boundary

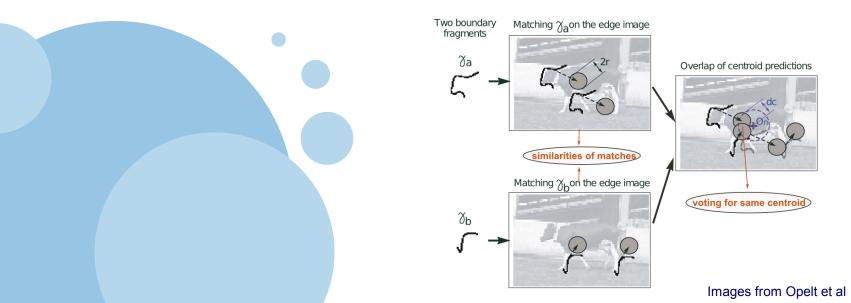
Fragment Model



Images from Opelt et al

Weak Detectors

- A weak detector is composed of k (typically 2 or 3) boundary fragments
- Detection should occur when
 - The k fragments match the image edges
 - The centroids concur
 - For positive images the centroid estimate agrees with the true object centroid



Strong Detector

- Given weak detectors *h_i*
- Using AdaBoost
 - In each round find the weak detector that obtains the best detection results on the current weighting

$$H\left(I\right) = sign\left(\sum_{i=1}^{T} h_{i}\left(I\right)w_{h_{i}}\right)$$

Example: Detection and Segmentation

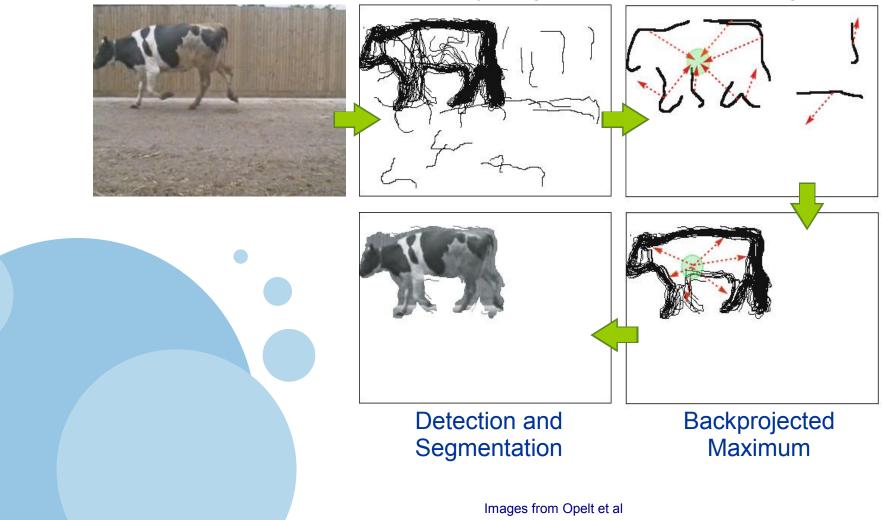
Original Image

Boundary

Fragment Model

> All Matched Boundary Fragments

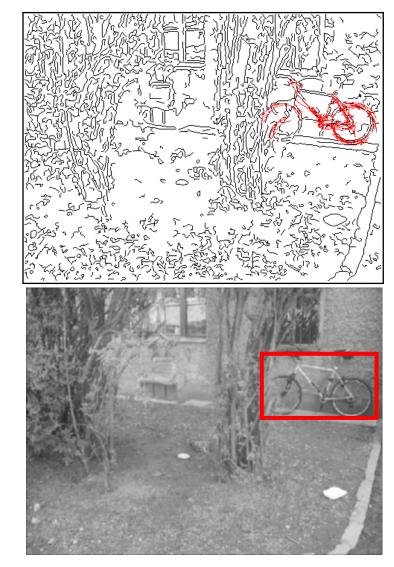
Centroid Voting on Subset of Fragments



Example: Detection and Localization

Boundary

Fragment Model



Images from Opelt et al

			RO	C Error I	Rate				
Algorithm	BFM	[12]	[22]	[25]	[2]	[3]	[14]	[26]	[28]
cars-rear	0.50%	8.80%	8.90%	21.40%	3.10%	2.30%	1.80%	9.80%	-
airplanes	2.60%	6.30%	11.10%	3.40%	4.50%	10.30%	-	17.10%	5.60%

D	etection Err	or
Algorithm	BFM	[18]
cars-rear	2.25%	6.10%

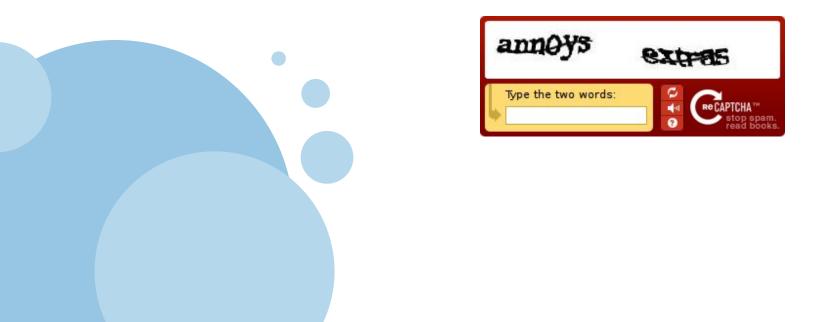
Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA

2003

G. Mori and J. Malik

What is a CAPTCHA?

- <u>Definition</u>: Completely Automated Public Turing test to tell Computers and Humans Apart.
- Used to prevent automated SPAM.
- Also to read books!



Applications of CAPTCHAs

- Preventing blog SPAM
- Protecting web site registration
- Protecting email addresses from scrapers
- Preventing dictionary attacks
- Online polling
- Blocking search engines
- Blocking email SPAM

Human Assisted OCR

Breaking

CAPTCHA

- Roughly 60 million CAPTCHAs are solved by humans every day.
- Equivalent to about 150,000 hours of work.
- Why not use these CAPTCHAs for hard OCR tasks?

•	Scanned type OCR reads as	This aged	portion J pntkm	l	ļ	1	durting under distinguished	from frow."

Why Break a CAPTCHA?

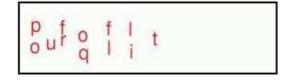
- CAPTCHAs help prevent SPAM
- They also offer challenges to the Al community
- A win-win situation:
 - If the CAPTCHA is not broken then SPAM is blocked
 - If it is broken then an AI problem has been solved

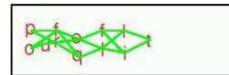
Approach 1

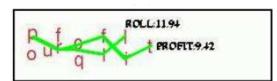
Breaking

CAPTCHA

- Detect letters using the Shape Context approach
 - Extended so that the SC includes the dominant tangential direction of the edges in each bin
- Form a directed acyclic graph of the letters to find candidate words
- Choose the most likely word based on the average deformable match cost of the individual letters



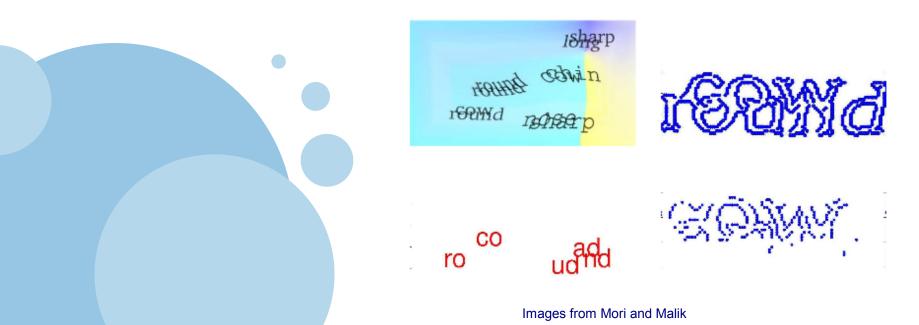




Images from Mori and Malik

- 18Hgrp rtoung Conin rtoung Conin round round parts
- For harder CAPTCHAs matching on letter sized regions is to difficult

Match on groups of letters instead

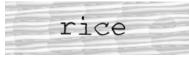


Example: EZ-Gimpy

polish

store

rice

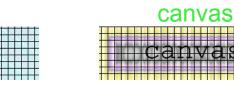


				e	8	15	51							
			0		h	-		~	~	5				
	-		1	Þ.	11	c	μ.	F	F	γ		-		-
	-	_			_	_	-			_	-		_	-

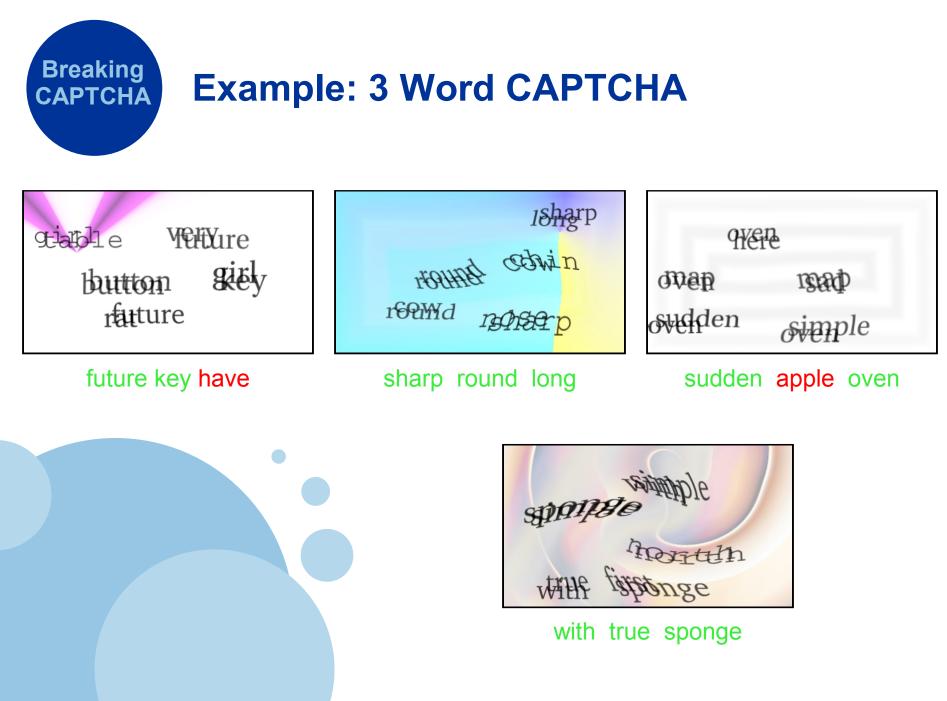
weight weight

mine

Ine



Images from Mori and Malik



Images from Mori and Malik

Conclusion Discussion Points

- How can shape matching be made more robust to clutter?
- What applications are not suitable for shape matching? Which are?
- How can methods like Shape Context take advantage of available training data?
- How can appearance and shape features be best combined?
- What other hard AI problems can be used as CAPTCHAs?