Qualitative Image Localization HoG v. SIFT

> Presented By: Sonal Gupta

Problem Statement

- Given images of interior of a building, how much can a robot recognize the building later
- Qualitative Image Localization

I am in Corridor 4 but I do not know the exact location

Global v. Local approach

- Global Histogram of Oriented Gradients
 - Introduced by Dalal & Triggs, CVPR 2005
 - Extended by Bosch et. al., CIVR 2007 pyramid of HoG - used in the experiments with no pyramids
 - Kosecka et. al., CVPR 2003 uses simpler version of HoG for image based localization
- Local SIFT features
 - Kosecka et. al., CVPR Workshop 2004

Basic HoG algorithm

- Divide the image into cells
 - In our case, every pixel is a cell
- Compute edges of the image
 - canny edge detector
- Compute the orientation of each edge pixel
- Compute the histogram
 - Each bin in the histogram represents the number of edge pixels having orientations in a certain range

Parameters to HoG

- Number of Bins of the Histogram
- Angle 180° or 360°,
 - 180° contrast sign of the gradient is ignored
 - used in the experiments
 - 360° uses all orientations as in SIFT

• Histogram of gradient orientations -Orientation -Position $135 \rightarrow 90 \rightarrow 45$

Weighted by magnitude

Different HoGs

- Difference between level 0 of pyramid HoG in Bosch et. al. versus Kosecka et. al. implementation of HoG
 - The vote of each edge pixel is linearly distributed across the two neighboring orientation bins according to the difference between the measured and actual bin orientation - soft voting
 - Eg.: Bins 10°, 20°, 30°; measured value 17°,
 - vote for: Bin 10° .15, Bin 30° .15, Bin 20°- .75

Distance Metric

Chi-Square distance

$$\chi^2(h_i, h_j) = \sum_k \frac{(h_i(k) - h_j(k))^2}{h_i(k) + h_j(k)}$$

 h_i and h_j are histograms of two frames k is the number of histogram bins

Kosecka et. al., CVPR 2003

Benefits of HoG

- Computed globally
- Occlusions caused by walking people, misplaced objects have minor effects
- Can generalize well
- Has worked really well for finding pedestrians on the street

Dataset

- Number of classes: 12
- Ran HoG and SIFT ten times

HoG Experiments

- Effect of a threshold how much is the nearest image in the training set far from the next nearest
 - ratio of matching features in both the training images
- Effect of Quantization One representative or prototype view of every class
- Effect of number of bins

Best Combination

Best Combination

- Threshold = 0
- Bins = 30
- No prototype views

HoG Results

Test

Correct

Correct

Obvious answers

Test

Result

Wrong

Wrong

All are wrongly classified, though they look so similar...

• SIFT descriptor

SIFT Vector Formation

- Threshold image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4 x 4 histogram array = 128 bit vector

Algorithm

- For every test image
 - For every training image
 - Find the nearest matching feature
 - Find the second nearest matching feature
 - If nearest neighbor 0.6 times closer than the second nearest neighbor
 - Number_of_matching_features ++
 - Find the training image with most number of matching features

Let di be the minimum distance and dj be the second minimum then feature_{test} matches feature_i if $d_i < 0.6*d_i$

Two Types of Threshold

- One is to check whether there is a matching feature in the given training image or not
 - Fixed 0.6
- One is to check whether the nearest image is far away from the next nearest image or not
 - Experimented for various values

Results - Numbers

- SIFT
 - Correctly Classified 99
 - Wrongly Classified 81
 - Accuracy 55%

Better than HoG!

SIFT - One bad image ruined the accuracy!

New Results for SIFT

- Removed the image
 - Avg. no. of images correctly classified: 134
 - Avg. no. of images wrongly classified: 46
 - Accuracy 74.4%
 - Earlier accuracy 55%
 - 19.44% higher accuracy!!

Threshold is not good

Modified feature matching in SIFT

- For every test feature, find nearest and second nearest feature from ALL the training images' features
- A feature is matching if nearest_distance < 0.6*second_nearest_distance
- Find the training image that has most features matching with the test image
- Call this one SIFT₂ and the earlier one SIFT₁

Result of SIFT₂

- Threshold = 0
 - Correct 163
 - Wrong 17
 - Accuracy 90. 5%
 - Accuracy of $SIFT_1 = 74.4\% 16.1\%$ higher!!
- Also, the one bad image problem gets removed!

Another dataset

- Till now we had images of the SAME building in our training set
- What if Robot is shown a DIFFERENT building?
 Can it recognize if an image is a corridor or an office?
- Test dataset has images from different floor and different buildings
 - ACES 5th floor and Taylor hall's corridor
 - Removed the Taylor Hall's corridor images from the training set

Dataset - II

No clear winner but $SIFT_2 = -1$

Explanation

- HoG captures the global distinctiveness of a category
- Lets see histograms of some of the images

SIFT Explanation

• 20 matching points between test and result images

Test

Result of SIFT₁

Test Image

Result Image

• Only 6 matching points between test image and the result produced by HoG(correct) Test Result by HoG

Conclusion

- SIFT performs better than HoG in previously seen building
 - Local descriptor gets the distinguishing local features
- HoG performs better than SIFT in previously unseen building!
 - Global descriptor gets the essence
 - Better than SIFT in formal setting of the environment --Buildings are never at 30°!!
 - Rotation invariance of SIFT results in worse accuracy

Conclusion

- Matching features across all the training images (SIFT₂) is better than matching features image by image (SIFT₁)
- SIFT₂ performs better than SIFT₁ in both previously seen and unseen buildings
- Quantization by taking mean in HoG gives poorer performance
- If we are performing 1-NN approach in classification using SIFT₁, then one bad image can deteriorate the results

Discussion Points

- Will threshold for selecting nearest images over next nearest image work when we quantize the image?
 - Since only one image per class
- Modify the threshold criteria by calculating ratio of number of matching features of nearest neighbor and for next nearest neighbor of *different* class
- Rotation invariance of SIFT is sometimes hurting the performance. Can we make it partially invariant for this task?
- What can be other matching algorithms than SIFT and HoG?

References and Resources

- Kosecka et. al., Qualitative Image Based Localization in Indoor Environments, CVPR 2003
- Dalal and Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
- Kosecka et. al., Location Recognition and Global Localization Based on Scale-Invariant Keypoints, CVPR Workshop 2004
- Pyramid of Histogram of Oriented Gradients
 - http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html
- Local features detector and descriptor
 - http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html