Detecting abnormal events

Jaechul Kim
Purpose

• Introduce general methodologies used in abnormality detection
• Deal with technical details of selected papers
Abnormal events

- Easy to verify, but hard to describe
- Generally regarded as rare events or unseen events
 - Detection of outliers
Overview: Taxonomy of approaches

• What representations are used to describe individual event?
 – Tracked trajectory based representation
 • Intuitive way to describe an event
 – Low-level feature based representation
 • Robust to the cluttered scene
 • Recently more preferred
Overview: Taxonomy based on event representation

- Tracked trajectory based representation

Tracked path of an interest object defines a single event.
Overview: Taxonomy based on event representation

• Low-level feature based representation

[Image: Optical Flows, Blob motion, etc]

Histogram of optical flows

\[[0,0,0,4,1,0, \\
10,0,8,4,0,0, \\
10,0,0,0,0,0, \\
1,0,0,0,0,0, \\
0,0,0,0,0,0] \]

Feature vector concatenating each optical flows
Overview: Taxonomy of approaches

- What techniques are used to determine anomaly of the event?
 - Local decision
 - Decide an anomaly solely based on the observation of locally detected features
 - Learning-based method
 - Detect statistical outliers using the learnt patterns
 - Search-based method
 - Search the similar images to the input in the dataset
Overview: Taxonomy based on anomaly decision method

• Local decision
 – Each local region independently flags an alert to anomaly
Overview: Taxonomy based on anomaly decision method

• Local decision

Cumulative histogram of a single local monitor

Large Deviation = Abnormality

Currently detected motion
Overview: Taxonomy based on anomaly decision method

• Pros
 – Easy to implement, fast to compute

• Cons
 – Hard to handle a relationship between co-occurring events in a single frame or an ordering of event sequences over multiple frames
Overview: Taxonomy based on anomaly decision method

- Learning-based method
 - Learn normal activities first, and then detect abnormal events as an outlier of the learnt patterns
Overview: Taxonomy based on anomaly decision method

- Learning-based method

Step 1: Divide a video into segments (= a single activity unit)
Overview: Taxonomy based on anomaly decision method

• Learning-based method

Step 2: Compute a similarity measure between each segment
Overview: Taxonomy based on anomaly decision method

• Learning-based method

Step 3: Learn a classifier that recognizes normal activities
Overview: Taxonomy based on anomaly decision method

• Pros
 – Principled way to considering an ordering of events as well as co-occurring events

• Cons
 – Hard to handle the evolution of activities
 • Inadequate to online application
 – Hard to localize an abnormality
Overview: Taxonomy based on anomaly decision method

• Search-based method
 – Search whether the input image has similar images exist in the database
Overview: Taxonomy based on anomaly decision method

- Search-based method

<table>
<thead>
<tr>
<th>Database Sequence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Sequence</td>
<td></td>
</tr>
<tr>
<td>Output - Detected Suspicious Behaviors (in red)</td>
<td></td>
</tr>
</tbody>
</table>
Overview: Taxonomy based on anomaly decision method

• Pros
 – Accurate detection from exhaustive search

• Cons
 – Time-consuming
Case study 1: Local decision method

- “A principled approach to detecting surprising events in video”, Laurent Itti and Pierre Baldi, CVPR 2005
Case study 1: Local decision method

- Step 1: Detect local features in all pixels over multiple scales and multiple channels
Case study 1: Local decision method

- Step 1
 - For each channel, DOG filters over multiple scales are applied to the image: Blob like features are extracted from each channel (motion, intensity...)

![DOG filters in several scale differences (1D case)]
Case study 1: Local decision method

• Step 1
 – Filter responses from each DOG are added into a small size of feature map

```
DOG responses

Across scale summation after normalization

Feature map

Resize

+```
Case study 1: Local decision method

- Step 2: Compute a saliency map from feature maps

KL divergence = a degree of surprise = pixel value of saliency map

Update pixel value distribution
Case study 1: Local decision method

• Step 2
  – For each pixel of feature map, a saliency value is computed
  – Pixel value distribution of each pixel of feature map is modeled as Gamma distribution
  – Given newly observed pixel value, update a pdf of Gamma distribution
  – Using KL-divergence, compute a deviation between prior and posterior Gamma distribution
  – Assign a KL-divergence as saliency value
Case study 1: Local decision method

- Step 3: Integration of saliency maps over multiple channels
Case study 1: Local decision method

Not very surprising

Very surprising

No more surprising
Case study 1: Local decision method

• Conclusion
  – Act as a “change” detector rather than abnormality detector
  – Forget the past very fast
    • Current observation is strongly weighted (50%) in the update of Gamma distribution
  – No experimental result on the application of abnormality detection
    • More focused on the attention problem
Case study 2: Clustering of activities

• “Detecting Unusual Activity in Video”, Hua Zhong, Jianbo Shi, and Mirko Visontai, CVPR 2004
  – Find clusters of activities based on co-occurrence of local motion features
  – Clustering is performed based on segmentation using eigenvectors
  – Abnormal events are defined as activities belonging to the clusters much deviated from others
Case study 2: Clustering of activities

• Step 1: Local feature extraction
  – Intensity gradient along the temporal axis is computed for each pixel
  – Histogram is built for each image based on the magnitude of intensity gradient

\[ M(x, y, t) = \left| \frac{\partial I(x, y, t)}{\partial t} \right|_2 \]

\[ \sum M(x, y, t) \]

Summation in each sub-region
Case study 2: Clustering of activities

- Step 2: K means of histograms
  - Each Histogram is mapped to one of K prototypes
  - Compute pair-wise similarity of prototypes $S(i,j)$ based on similarity in histograms of cluster centers
Case study 2: Clustering of activities

• Step3: Slice the video into T second long segments
  – Compute the co-occurrence matrix C between prototypes and segment

<table>
<thead>
<tr>
<th></th>
<th>Prototype1</th>
<th>Prototype2</th>
<th>Prototype3</th>
<th>Prototype4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>Segment2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>Segment3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case study 2: Clustering of activities

- Step 4: Construct a similarity matrix with associated weight reflecting the similarities between segments and prototypes.

<table>
<thead>
<tr>
<th>Segments</th>
<th>Prototypes</th>
<th>Seg1</th>
<th>Seg2</th>
<th>....</th>
<th>Prt1</th>
<th>Prt2</th>
<th>....</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seg1</td>
<td>I</td>
<td>C^T</td>
<td>C^T</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seg2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>....</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prt1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prt2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>....</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Case study 2: Clustering of activities

- Step 5: Solve generalized eigenvalue problems on the similarity matrix
  - Eigenvectors from the largest one provide coordinates of each vertex of graph
  - Vertices with similarity tends to be close each other in computed coordinates
Case study 2: Clustering of activities

• Segmentation using eigenvector
  – Define a similarity matrix between vertices
  – Similarity matrix is denoted by $W$
  – Normalize $W$ by degree matrix $D$ (diagonal matrix)
    \[
    D(i, i) = \sum_j W(i, j), \quad N = D^{-1/2} W D^{-1/2}, \quad N(i, j) = W(i, j) / \sqrt{D(i, i)D(j, j)}
    \]
  – Construct an $n$ by $m$ matrix $V$ whose columns are the first $m$ eigenvectors of $N$
  – The $i^{th}$ row of $V$ provides a new coordinate of $i^{th}$ vertex in the $m$ dimensional space
    • Similar vertices get closer in the $m$ dimensional space
Case study 2: Clustering of activities

- **Segmentation using eigenvector**

Define a similarity $W$ of each pair of pixels based on intensity, position, etc.

Solve the eigenvector problem on $N$ and get $V$.

$Q(i,j)$ gives us a correlation between pixel $i$ and $j$ in the $k$-dimensional space.

A row of $Q = VV^T$ gives us a correlation between pixel $i$ and $j$ in the $k$-dimensional space.

Different row of $Q = VV^T$ gives us a correlation between pixel $i$ and $j$ in the $k$-dimensional space.
Case study 2: Clustering of activities

- Step 6: Clustering of video segments and prototypes in the m-dimensional space using K-means

![Diagram showing clusters and segments](image_url)
Case study 2: Clustering of activities

• Step 7: Detect abnormal video segment by computing inter-cluster distance
  – A cluster having large inter-cluster distance is flagged as being abnormal

![Diagram showing clusters and segments with a flag indicating Cluster 4 as abnormal.](image)
Case study 2: Clustering of activities

- Experimental result

A1  B1  C1  D1  E1

A2  B2  C2  D2  E2

Detected cheating (A-C)  Non-detecting  False alarm
Case study 2: Clustering of activities

• Conclusion
  – Simple computation in clustering video segment
    • But arbitrary in defining the number of clusters in m-dimensional space
    • Also, it is unclear how to choose the number of eigenvectors, m.
  – Hard to be applied to online application
Case study3 : Learning based activity clustering

• “Video Behavior Profiling and Abnormality Detection without Manual Labelling,” Tao Xiang and Shaogang Gong, ICCV05
  – HMM based training of each video segment
  – Defining similarity between segments by comparing HMM networks of each segment
  – Clustering video segments with automatic selection of number of clusters
Case study 3:
Learning based activity clustering

- Step 1: Slice the video into segments and detect local features through the video
  - Foreground pixel detector + Connected component → Blob of foreground pixels
  - Seven dimensional blob feature vector
    \[ v = \{ x, y, w, h, R, Mx, My \} \]
Case study 3: Learning based activity clustering

- Step 2: Clustering of Blob features into $K_e$ classes
  - Gaussian Mixture model with automatic model order selection based on Bayesian Information Criterion (BIC)
  - Feature vector of video segment $V_n$ with $T_n$ frames

$P_n = \{ p_{n1}, \ldots, p_{nt}, \ldots, p_{nT_n} \}$

$P_{nt} = \{ p_{nt}^1, \ldots, p_{nt}^k, \ldots, p_{nt}^{k_e} \}$
Case study 3: Learning based activity clustering

- Step 3: Training of HMM for each video segment
  - For N segments, N HMMs are trained
    - Each HMM has $K_e$ states (arbitrary)
    - Observation: video segment feature vector $P_n$
    - Parameters of HMM: transition probability, conditional pdf of observation given a state
  - Output of training: Parameters of HMM
    - A kind of EM algorithm (called Baum-Welch) is used to iteratively optimize joint probability of states and optimal parameters
Case study3: Learning based activity clustering

• Step4: Compute similarity between video segments based on trained HMM

\[
S(i, j) = \frac{1}{2} \left\{ \frac{1}{T_j} \log \Pr(P_j \mid B_i) + \frac{1}{T_i} \log \Pr(P_i \mid B_j) \right\}
\]

\[
\Pr(P_j \mid B_i) \quad \text{Likelihood of video segment } V_j \text{ given a HMM trained on segment } V_i
\]
Case study 3: Learning based activity clustering

- Step 5: Assign a $k$-dimensional coordinate to each video segment based on segmentation using eigenvectors of normalized similarity matrix
  - Use the same technique as the one in case study 2
  - But, number of eigenvectors, $k$, is automatically chosen
Case study 3: Learning based activity clustering

- How to select the number of eigenvectors
  - \( i \)th element of \( j \)th eigenvector is \( j \)th coordinate of \( i \)th vertex
  - The values of eigenvector’s each element should be tightly clustered to have a discriminating power

\[
\begin{align*}
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8
\end{array}
\end{align*}
\]

Meaningful eigenvector

\[
\begin{align*}
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8
\end{array}
\end{align*}
\]

Useless eigenvector
Case study 3: Learning based activity clustering

- **How to select the number of eigenvectors**
  - Select eigenvectors with desirable property above mentioned

\[
P(e_{kn}|\theta_{e_{kn}}) = (1 - R_{ek})P(e_{kn}|\theta^1_{e_{kn}}) + R_{ek} P(e_{kn}|\theta^2_{e_{kn}})
\]

- Single-mode Gaussian
- Two-modes Gaussian

\[
P(e_{kn}|\theta^1_{e_{kn}}) = \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma_{k1}}} \exp \left[ -\frac{1}{2} \left( \frac{e_{kn} - \mu_{k1}}{\sigma_{k1}} \right)^2 \right]
\]

\[
P(e_{kn}|\theta^2_{e_{kn}}) = \prod_{n=1}^{N} \left( \frac{w_k}{\sqrt{2\pi\sigma_{k2}}} \exp \left[ -\frac{1}{2} \left( \frac{e_{kn} - \mu_{k2}}{\sigma_{k2}} \right)^2 \right] + \frac{1-w_k}{\sqrt{2\pi\sigma_{k3}}} \exp \left[ -\frac{1}{2} \left( \frac{e_{kn} - \mu_{k3}}{\sigma_{k3}} \right)^2 \right] \right)
\]

- \( R_{ek} > 0.5 \) : Two modes Gaussian is more fit to a given eigenvector = Given vector is meaningful
Case study 3: Learning based activity clustering

- How to select the number of eigenvectors
Case study3 : Learning based activity clustering

- Step6: Clustering of video segments in k-dimensional space
  - Use a Gaussian Mixture Model with automatic selection of the number of components
Case study 3: Learning based activity clustering

• Step 7: Detecting anomaly
  – Re-training of HMMs for each clusters
    • Using all video segments belonging to a given cluster
  – For a new video segment, compute likelihoods for each HMMs
    \[ P(P|M) = \sum_{k=1}^{K} \frac{N_k}{N} P(P|B_k) \]
  – If \( P(P|M) < T_h_A \), flag abnormality
  – Otherwise, classify the video segment into a ML cluster
    \[ \hat{k} = \arg \max_k \{ P(P|B_k) \} \]
Case study 3: Learning based activity clustering

- Result – Typical activities
Case study 3:
Learning based activity clustering

- Result – Abnormal activities
Case study3:
Learning based activity clustering

• Conclusion
  – Propose more advanced technique to cluster activities
    • Automatic selection of the number of clusters
    • Allow variable length of segments by adopting distance measure based on HMM
  – Sensitive to training dataset
    • HMM tends to be over-fitting to the training data
    • Local minimum of estimation of HMM parameters
  – Inadequate to online applications
    • Updating HMMs is computationally expensive
  – Cannot localize the abnormal event
    • Drawback of segment-based approach
Case study 4: Search-based method

- “Detecting Irregularities in Images and Video,” ICCV05, IJCV07
  - For every and each pixel, find a corresponding region in the database
Case study 4: Search-based method

(a) A query image:

(b) Inferring the query from the database:

(c) The database with the corresponding regions of support:

(d) An ensembles-of-patches (more flexible and efficient):
Case study 4: Search-based method

• Step 1: Create patch descriptor for every pixel in the images
  – Apply Gaussian filter with several scales along the spatial-temporal axis
  – For each scale, compute temporal derivatives
  – For every pixel, 7 by 7 by 4 descriptor is created over multiple scales
Case study 4: Search-based method

Pixel by pixel
Difference between frames

Create 7 by 7 by 4 descriptor for every pixel

4 frames
Case study 4 : Search-based method

• Step2: Create an ensemble of patches for every pixel
  – Sample hundreds of points in the 50 by 50 by 50 windows surrounding a given pixel
  – Randomly pick a scale of each sampled point
  – An Ensemble of a pixel consists of hundreds of patches of different scales
Case study 4: Search-based method

50 by 50 by 50 size of ensemble and sampled points (i.e. patches) in an ensemble
Case study 4 : Search-based method

• Step3: Search similar ensembles through the database
  – Based on pre-defined probabilistic model of ensemble variation, find the most similar (most likelihood) ensemble to a given query ensemble
Case study 4: Search-based method

Full search of database for a given query ensemble
Case study 4: Search-based method

- Probabilistic Model of ensemble variation
  - Allow some variations of patch locations and patch descriptors in an ensemble

\[
P(c_x, d^1_x, \ldots, l^1_x, \ldots, c_y, d^1_y, \ldots, l^1_y) = \alpha \prod_i P(l^i_y | l^i_x, c_x, c_y) P(d^i_y | d^i_x) P(d^i_x | l^i_x)
\]

\[
P(d^i_y | d^i_x) = \alpha_1 \exp \left( -\frac{1}{2} (d^i_y - d^i_x)^T S_D^{-1} (d^i_y - d^i_x) \right)
\]

\[
P(l^i_y | l^i_x, c_x, c_y) = \alpha_2 \cdot \exp \left( -\frac{1}{2} ((l^i_y - c_y) - (l^i_x - c_x))^T \right)
\]

\[
\times S_L^{-1} \left( ((l^i_y - c_y) - (l^i_x - c_x)) \right)
\]

y: Query  
x: Database

Descriptor variation  
Relative location variation
Case study 4 : Search-based method

• Speed up the search : Progressive elimination
  – For the first patch, find the best c patches in the database
  – Guess the candidate center locations Cx in the c images that have the best c patches
  – From the guess Cx, determine a region where the second patch can exist
  – Search the similar patches to the second patch in the given region
    • If similarity is below the threshold, stop the search for that image
  – Repeat the guess of Cx location based on the second patch comparison result
Case study 4: Search-based method
Case study 4: Search-based method

• Speed up the search: Multi-scale search
  – As the first patch to be searched, pick the patch belonging to the largest scale
  – Reduce the risk of early false decision
  – Reduce the number of initial search
Case study 4 : Search-based method

• Speed up the search : Use of hash or KD-tree
  – Vector quantization of descriptors
  – Cluster the descriptors using hash table or KD-tree
Case study 4: Search-based method

• Speed up the search: Predictive search
  – For query points in the neighborhood, the matched patch is highly likely to be located in the similar position in the database
Case study 4: Search-based method

- Step 4: Determining an abnormality – Shifted and variable sized window technique
  - Likelihood of a pixel $p$ $l(p) = \max_{i \in \text{shifted neighbor}(p)} \Pr(i)$
Case study 4: Search-based method

- Shifted window
  - Easy way to handle occlusion problem
Case study 4: Search-based method

- Variable sized windows
  - If low likelihood is obtained at the trial with large size of initial window (e.g. 50 by 50 by 50), retry a search with smaller size of window
  - But, penalty is imposed on the smaller size window
  - Finally, if likelihood is below the threshold, flag an abnormality for that pixel
Case study 4: Search-based method

• Conclusion
  – Accurate localization of abnormal event
  – Robustly perform independent of the kind of scenes
  – Search time is too long
    • Online application will not be possible
  – Operate in a local manner
    • Cannot deal with co-occurrence of activities or temporal ordering of long sequences of activities
  – Operate in a translation invariant manner
    • Good or bad of this property depends on applications
Conclusion

• Local decision
  – Computationally efficient
  – Easily adaptive to the temporal evolution of activities
  – Many of false alarms: act like a detector of scene change
  – Can be used as pre-processing routine of abnormality detection
Conclusion

• Learning-based decision
  – Based on clustering of normal activities
  – Statistical outliers are regarded as abnormal events
  – Ordering and co-occurrence of actions are handled in a principled way
  – Mainly focused on activities of a single individual
    • Interaction handling could make the number of states in HMM infeasible
  – Hard to adapt to the evolution of observations over a long time
  – Scene sensitive
Conclusion

• Search-based decision
  – Intuitively simple to understand
  – Accurate localization of abnormal event
  – Less false alarms than local decision, but computationally expensive
  – Suffer from occlusion
  – Unclear how to handle co-occurrence of activities
    • Although some activities have been seen in the database, their co-occurrence may be able to be abnormal