Detecting abnormal events

Jaechul Kim

Purpose

- Introduce general methodologies used in abnormality detection
- Deal with technical details of selected papers

Abnormal events

- Easy to verify, but hard to describe
- Generally regarded as rare events or unseen events
 - Detection of outliers

Overview: Taxonomy of approaches

- What representations are used to describe individual event?
 - Tracked trajectory based representation
 - Intuitive way to describe an event
 - Low-level feature based representation
 - Robust to the cluttered scene
 - Recently more preferred

Overview: Taxonomy based on event representation

Tracked trajectory based representation

Tracked path of an interest object defines a single event.

Overview: Taxonomy based on event representation

Low-level feature based representation

Overview: Taxonomy of approaches

- What techniques are used to determine anomaly of the event?
 - Local decision
 - Decide an anomaly solely based on the observation of locally detected features
 - Learning-based method
 - Detect statistical outliers using the learnt patterns
 - Search-based method
 - Search the similar images to the input in the dataset

- Local decision
 - Each local region independently flags an alert to anomaly

Local decision

- Pros
 - Easy to implement, fast to compute
- Cons
 - Hard to handle a relationship between cooccurring events in a single frame or an ordering of event sequences over multiple frames

- Learning-based method
 - Learn normal activities first, and then detect abnormal events as an outlier of the learnt patterns

Learning-based method

Step1: Divide a video into segments(=a single activity unit)

Learning-based method

Step2: Compute a similarity measure between each segment

Learning-based method

Step3: Learn a classifier that recognizes normal activities

Pros

 Principled way to considering an ordering of events as well as co-occurring events

Cons

- Hard to handle the evolution of activities
 - Inadequate to online application
- Hard to localize an abnormality

- Search-based method
 - Search whether the input image has similar images exist in the database

Search-based method

Database Sequence

Input Sequence

Output Detected
Suspicous
Behaviors
(in red)

- Pros
 - Accurate detection from exhaustive search
- Cons
 - Time-consuming

 "A principled approach to detecting surprising events in video", Laurent Itti and Pierre Baldi, CVPR 2005

 Step 1: Detect local features in all pixels over multiple scales and multiple channels

• Step1

 For each channel, DOG filters over multiple scales are applied to the image: Blob like features are extracted from each channel (motion, intensity...)

DOGs in several scale differences (1D case)

• Step1

 Filter responses from each DOG are added into a small size of feature map

Step 2: Compute a saliency map from feature maps

Step2

- For each pixel of feature map, a saliency value is computed
- Pixel value distribution of each pixel of feature map is modeled as Gamma distribution
- Given newly observed pixel value, update a pdf of Gamma distribution
- Using KL-divergence, compute a deviation between prior and posterior Gamma distribution
- Assign a KL-divergence as saliency value

 Step3: Integration of saliency maps over multiple channels

Conclusion

- Act as a "change" detector rather than abnormality detector
- Forget the past very fast
 - Current observation is strongly weighted (50%) in the update of Gamma distribution
- No experimental result on the application of abnormality detection
 - More focused on the attention problem

- "Detecting Unusual Activity in Video", Hua Zhong, Jianbo Shi, and Mirko Visontai, CVPR 2004
 - Find clusters of activities based on co-occurrence of local motion features
 - Clustering is performed based on segmentation using eigenvectors
 - Abnormal events are defined as activities belonging to the clusters much deviated from others

- Step 1: Local feature extraction
 - Intensity gradient along the temporal axis is computed for each pixel
 - Histogram is built for each image based on the magnitude of intensity gradient

Summation in each sub-region

- Step2 : K means of histograms
 - Each Histogram is mapped to one of K prototypes
 - Compute pair-wise similarity of prototypes S(i,j)
 based on similarity in histograms of cluster centers

- Step3: Slice the video into T second long segments
 - Compute the co-occurrence matrix C between prototypes and segment

	Prototype1	Prototype2	Prototype3	Prototype4	
Segment1	1	1	0	0	
Segment1 Segment2 Segment3	0	1	1	1	•••
Segment3	0	0	0	0	

 Step4: Construct a similarity matrix with associated weight reflecting the similarities between segments and prototypes

- Step5: Solve generalized eigenvalue problems on the similarity matrix
 - Eigenvectors from the largest one provide coordinates of each vertex of graph
 - Vertices with similarity tends to be close each other in computed coordinates

- Segmentation using eigenvector
 - Define a similarity matrix between vertices
 - Similarity matrix is denoted by W
 - Normalize W by degree matrix D (diagonal matrix)

$$D(i,i) = \sum_{j} W(i,j), N = D^{-1/2}WD^{-1/2}, N(i,j) = W(i,j)/\sqrt{D(i,i)D(j,j)}$$

- Construct a n by m matrix V whose columns are the first m eigenvectors of N
- The ith row of V provides a new coordinate of ith vertex in the m dimensional space
 - Similar vertices get closer in the m dimensional space

Segmentation using eigenvector

Input image

Define a similarity W of each pair of pixels based on intensity, position, etc

Solve the eigenvector problem on N and get V

A row of $\ \mathbf{Q} = \mathbf{V}\mathbf{V}^T$

Different row of $\mathbf{Q} = \mathbf{V}\mathbf{V}^T$

Q(i,j) gives us a correlation between pixel i and j in the k-dimensional space

 Step6: Clustering of video segments and prototypes in the m dimensional space using K means

Case study 2: Clustering of activities

- Step7: Detect abnormal video segment by computing inter-cluster distance
 - A cluster having large inter-cluster distance is flagged as being abnormal

Case study 2: Clustering of activities

Experimental result

Case study 2: Clustering of activities

- Simple computation in clustering video segment
 - But arbitrary in defining the number of clusters in mdimensional space
 - Also, it is unclear how to choose the number of eigenvectors, m.
- Hard to be applied to online application

- "Video Behavior Profiling and Abnormality Detection without Manual Labelling," Tao Xiang and Shaogang Gong, ICCV05
 - HMM based training of each video segment
 - Defining similarity between segments by comparing HMM networks of each segment
 - Clustering video segments with automatic selection of number of clusters

- Step1: Slice the video into segments and detect local features through the video
 - Foreground pixel detector + Connected component → Blob of foreground pixels
 - Seven dimensional blob feature vector

$$v = {\overline{x}, \overline{y}, w, h, R, Mx, My}$$

- Step2: Clustering of Blob features into K_e classes
 - Gaussian Mixture model with automatic model order selection based on Bayesian Information Criterion(BIC)
 - Feature vector of video segment V_n with T_n frames

$$P_n = \{ p_{n1}, ..., p_{nt}, ..., p_{nT_n} \}$$

$$p_{nt} = \{ p_{nt}^1, ..., p_{nt}^k, ..., p_{nt}^{k_e} \}$$

- Step3: Training of HMM for each video segment
 - For N segments, N HMMs are trained
 - Each HMM has K_e states (arbitrary)
 - Observation : video segment feature vector P_n
 - Parameters of HMM: transition probability, conditional pdf of observation given a state

 p_{nt-1}^1 p_{nt-1}^k p_{nt-1}^{Ke} p_{nt}^1 p_{nt}^k

- Output of training: Parameters of HMM
 - A kind of EM algorithm (called Baum-Welch) is used to iteratively optimize joint probability of states and optimal parameters

 Step4: Compute similarity between video segments based on trained HMM

$$S(i, j) = \frac{1}{2} \left\{ \frac{1}{T_j} \log \Pr(P_j \mid B_i) + \frac{1}{T_i} \log \Pr(P_i \mid B_j) \right\}$$

 $Pr(P_j | B_i)$ Likelihood of video segment V_j given a HMM trained on segment V_i

- Step5: Assign a k-dimensional coordinate to each video segment based on segmentation using eigenvectors of normalized similarity matrix
 - Use the same technique as the one in case study 2
 - But, number of eigenvectors, k, is automatically chosen

- How to select the number of eigenvectors
 - i th element of j th eigenvector is a j th coordinate
 of i th vertex
 - The values of eigenvector's each element should be tightly clustered to have a discriminating power

- How to select the number of eigenvectors
 - Select eigenvectors with desirable property above mentioned

$$P(e_{kn}|\theta_{e_{kn}}) = (1-R_{\mathbf{e_k}})P(e_{kn}|\theta_{e_{kn}}^1) + R_{\mathbf{e_k}}P(e_{kn}|\theta_{e_{kn}}^2)$$
 Single-mode Gaussian Two-modes Gaussian

$$P(e_{kn}|\theta_{e_{kn}}^{1}) = \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi}\sigma_{k1}} \exp\left[-\frac{1}{2} \left(\frac{e_{kn} - \mu_{k1}}{\sigma_{k1}}\right)^{2}\right] \qquad P(e_{kn}|\theta_{e_{kn}}^{2}) = \prod_{n=1}^{N} \left(\frac{\frac{w_{k}}{\sqrt{2\pi}\sigma_{k2}} \exp\left[-\frac{1}{2} \left(\frac{e_{kn} - \mu_{k2}}{\sigma_{k2}}\right)^{2}\right]}{+\frac{1-w_{k}}{\sqrt{2\pi}\sigma_{k3}} \exp\left[-\frac{1}{2} \left(\frac{e_{kn} - \mu_{k3}}{\sigma_{k3}}\right)^{2}\right]}\right)$$

 $-R_{e_k} > 0.5$: Two modes Gaussian is more fit to a given eigenvector = Given vector is meaningful

How to select the number of eigenvectors

- Step6: Clustering of video segments in kdimensional space
 - Use a Gaussian Mixture Model with automatic selection of the number of components

- Step7: Detecting anomaly
 - Re-training of HMMs for each clusters
 - Using all video segments belonging to a given cluster
 - For a new video segment, compute likelihoods for each HMMs $P(\mathbf{P}|\mathbf{M}) = \sum_{k=1}^{K} \frac{N_k}{N} P(\mathbf{P}|\mathbf{B}_k)$
 - If $P(P|M) < Th_A$, flag abnormality
 - Otherwise, classify the video segment into a ML cluster $\hat{k} = \arg\max_{k} \left\{ P(\mathbf{P}|\mathbf{B}_k) \right\}$

Result – Typical activities

Result – Abnormal activities

- Propose more advanced technique to cluster activities
 - Automatic selection of the number of clusters
 - Allow variable length of segments by adopting distance measure based on HMM
- Sensitive to training dataset
 - HMM tends to be over-fitting to the training data
 - Local minimum of estimation of HMM parameters
- Inadequate to online applications
 - Updating HMMs is computationally expensive
- Cannot localize the abnormal event
 - Drawback of segment-based approach

- "Detecting Irregularities in Images and Video," ICCV05, IJCV07
 - For every and each pixel, find a corresponding region in the database

(a) A query image:

(b) Inferring the query from the database:

(c) The database with the corresponding regions of support:

(d) An ensembles-of-patches (more flexible and efficient):

- Step1: Create patch descriptor for every pixel in the images
 - Apply Gaussian filter with several scales along the spatial-temporal axis
 - For each scale, compute temporal derivatives
 - For every pixel, 7 by 7 by 4 descriptor is created over multiple scales

- Step2: Create an ensemble of patches for every pixel
 - Sample hundreds of points in the 50 by 50 by 50 windows surrounding a given pixel
 - Randomly pick a scale of each sampled point
 - An Ensemble of a pixel consists of hundreds of patches of different scales

50 by 50 by 50 size of ensemble and sampled points(i.e patches) in an ensemble

- Step3: Search similar ensembles through the database
 - Based on pre-defined probabilistic model of ensemble variation, find the most similar(most likelihood) ensemble to a given query ensemble

Full search of database for a given query ensemble

- Probabilistic Model of ensemble variation
 - Allow some variations of patch locations and patch descriptors in an ensemble

$$P\left(c_x,d_x^1,\ldots,l_x^1,\ldots,c_y,d_y^1,\ldots,l_y^1\right) \qquad \text{y: Query} \\ = \alpha \prod_i P\left(l_y^i \mid l_x^i,c_x,c_y\right) P\left(d_y^i \mid d_x^i\right) P\left(d_x^i \mid l_x^i\right) \qquad \text{x: Database} \\ P\left(d_y^i \mid d_x^i\right) = \alpha_1 \exp\left(-\frac{1}{2} \left(d_y^i - d_x^i\right)^T S_D^{-1} \left(d_y^i - d_x^i\right)\right) \qquad \text{Descriptor} \\ \text{variation} \\ P\left(l_y^i \mid l_x^i,c_x,c_y\right) = \alpha_2 \cdot \exp\left(-\frac{1}{2} \left(\left(l_y^i - c_y\right) - \left(l_x^i - c_x\right)\right)^T \\ \times S_L^{-1} \left(\left(l_y^i - c_y\right) - \left(l_x^i - c_x\right)\right)\right) \qquad \text{Relative location} \\ \text{variation} \\ \end{array}$$

- Speed up the search : Progressive elimination
 - For the first patch, find the best c patches in the database
 - Guess the candidate center locations Cx in the c images that have the best c patches
 - From the guess Cx, determine a region where the second patch can exist
 - Search the similar patches to the second patch in the given region
 - If similarity is below the threshold, stop the search for that image
 - Repeat the guess of Cx location based on the second patch comparison result

- Speed up the search : Multi-scale search
 - As the first patch to be searched, pick the patch belonging to the largest scale
 - Reduce the risk of early false decision
 - Reduce the number of initial search

- Speed up the search : Use of hash or KD-tree
 - Vector quantization of descriptors
 - Cluster the descriptors using hash table or KD-tree

- Speed up the search: Predictive search
 - For query points in the neighborhood, the matched patch is highly likely to be located in the similar position in the database

 Step4: Determining an abnormality – Shifted and variable sized window technique

- Likelihood of a pixel p
$$l(p) = \max_{i \in shifted \ neighbor(p)} \Pr(i)$$

- Shifted window
 - Easy way to handle occlusion problem

Variable sized windows

- If low likelihood is obtained at the trial with large size of initial window (e.g. 50 by 50 by 50), retry a search with smaller size of window
- But, penalty is imposed on the smaller size window
- Finally, if likelihood is below the threshold, flag an abnormality for that pixel

- Accurate localization of abnormal event
- Robustly perform independent of the kind of scenes
- Search time is too long
 - Online application will not be possible
- Operate in a local manner
 - Cannot deal with co-occurrence of activities or temporal ordering of long sequences of activities
- Operate in a translation invariant manner
 - Good or bad of this property depends on applications

- Local decision
 - Computationally efficient
 - Easily adaptive to the temporal evolution of activities
 - Many of false alarms : act like a detector of scene change
 - Can be used as pre-processing routine of abnormality detection

- Learning-based decision
 - Based on clustering of normal activities
 - Statistical outliers are regarded as abnormal events
 - Ordering and co-occurrence of actions are handled in a principled way
 - Mainly focused on activities of a single individual
 - Interaction handling could make the number of states in HMM infeasible
 - Hard to adapt to the evolution of observations over a long time
 - Scene sensitive

- Search-based decision
 - Intuitively simple to understand
 - Accurate localization of abnormal event
 - Less false alarms than local decision, but computationally expensive
 - Suffer from occlusion
 - Unclear how to handle co-occurrence of activities
 - Although some activities have been seen in the database, their co-occurrence may be able to be abnormal