

Today

- Some logistics
- Overview lecture on recognition models
- Discussion of bag-of-words and constellation model approaches

10-Jan	Coorse overview	Presenter	Dama	Cogen	Itaana.doo
	Background in recognition, local feature models			Since of all 2003	
1-Feb	Visual vocabularies	Joseph	0n	Empire et al. 2003 Novak et al. 2005 Notar et al. 2005 Motomane et al. 2006	
BFab 15-Feb	Learning about images from keyword-based Web search Image and video retargating	David Harshdeep	Danglang	and the second se	-
10-1-60	such and spectar benefit	rarchdeep	Marc (index).		
22.Fab	Fast indexing methods	Densians	Maysam (datasets)		
29-Feb	Faces, initial proposal discussions	Newton	Harshdeep		
7-Mar	Text/speech and images/ideo	Jos Hyun	Denal	1	Project propusal
14-Mar	Spring break, no class				
21-Mar	Exploring images in 3d	Maysare	Jaechul		
29-Mar	Context and background knowledge in recognition	Adrian	Joseph		
4 Apr	Learning distance functions	201	David		
11-Apr	Detecting abnormal events	Jaechul	Inonel		- Anno 1997 - A
15-Apr	Place recognition and kidnapped robots	Senal	Joo Hyun		Project rough drafts due
25-Apr	Shape matching, discussion of rough draft reviews	Marc	Newton		Reviews due on the drafts
2-May	Last day of class: project presentations	1.000.000			Final papers

Demo guidelines

Implement/download code for a core idea in the paper and show us toy examples:

- Experiment with different types of (mini) training/testing data sets
- Evaluate sensitivity to parameter settings
- Show (on a small scale) an example in practice that highlights a strength/weakness of the approach
- Want to consider illustrative example, not a system

Demo presentation format

- · Give algorithm, relevant technical details
- Describe scope of experiments
- Present the experiments, explain rationale for outcomes
- Conclude with a summary of the messages

Timetable for presenters

- By the Wednesday the week before:
 - email slides to me, schedule time to meet and discuss.
- Week of:
 - refine slides, practice presentation, know about how long each part requires.
- · Day of:
 - send me final slides as PDF file

For Feb 1 and Feb 8 presenters: by upcoming Wednesday and Friday

Reviews

- Submit one review per week unless you are presenting (but read all assigned papers)
- Evaluation:
 - 0 none
 - 1 "check -": little effort/reflection
 - 2 "check", good review
 - 3 "check+", very good review

Learning situations

- Varying levels of supervision

 Unsupervised
 - Image labels
 - Object centroid/bounding box
 - Segmented object
 - Manual correspondence (typically sub-optimal)

Inputs/outputs/assumptions

- What input is available?
 - Static grayscale image
 - 3D range data
 - Video sequence
 - Multiple calibrated cameras
 - Segmented data, unsegmented data
 - CAD model
 - Labeled data, unlabeled data, partially labeled data

Inputs/outputs/assumptions

- What is the goal?
 - Say yes/no as to whether an object present in image
 - Determine pose of an object, e.g. for robot to grasp it
 - Categorize all objects
 - Forced choice from pool of categories
 - Bounding box on object
 - Full segmentation
 - Build a model of an object category

Outline

- Overview of recognition background
 Model-based
 - Appearance-based
 - Local feature-based
 - Features and interest operators
 - Bags of words
 - Constellation models/part-based models

Model-based recognition

- Which image features correspond to which features on which object model in the "modelbase"?
- If enough match, and they match well with a particular transformation for given camera model, then
 - Identify the object as being there
 - Estimate pose relative to camera

Hypothesize and test: main idea

- Given model of object
- New image: hypothesize object identity and pose
- · Render object in camera
- Compare rendering to actual image: if close, good hypothesis.

Generating hypotheses

We want a good correspondence between model features and image features.

– Brute force?

Brute force hypothesis generation

- For every possible model, try every possible subset of image points as matches for that model's points.
- Say we have L objects with P features, N features found in the image

Generating hypotheses

We want a good correspondence between model features and image features.

- Brute force?
- Prune search via geometric or relational constraints: interpretation tree
- Pose consistency: use subsets of features to estimate larger correspondence
- Voting, pose clustering

Pose consistency / alignment

- · Key idea:
 - If we find good correspondences for a small set of features, it is easy to obtain correspondences for a much larger set.
- · Strategy:
 - Generate hypotheses using small numbers of correspondences (how many depends on camera type)
 - Backproject: transform all model features to image features
 - Verify

Pose clustering (voting)

- Narrow down the number of hypotheses to verify: identify those model poses that a lot of features agree on.
 - Use each group's correspondence to estimate pose
 - Vote for that object pose in accumulator array (one array per object if we have multiple models)

Application: Surgery To minimize damage by operation planning To reduce number of operations by planning surgery To remove only affected tissue Problem ensure that the model with the operations planned on it and the information about the affected tissue lines up with the planting surgery display model information supervised on view of patient Big Issue: coordinate alignment, as above

Summary: model-based recognition

- Hypothesize and test: looking for object and pose that fits well with image
 - Use good correspondences to designate hypotheses
 - Limit verifications performed by voting
- · Requires model for the specific objects
 - Searching a modelbase
 - Registration tasks
- Requires camera model selection

Limits of model-based recognition?

Outline

- Overview of recognition background – Model-based
 - Appearance-based
 - Local feature-based
 - Features and interest operators
 - Bags of words
 - Constellation models

Global measure of appearance

e.g., Color histogram

Images Classified as Sunsets using Overall Color Histograms

When are "global" representations (and window-based detection) appropriate?

Limitations of global representations

- Success may rely on alignment
- · All parts of image impact description

History of local invariant features... Wide baseline stereo

- 3d reconstruction depends on finding good correspondences
- Especially with wide-baseline views, local image deformations not well-approximated with rigid transformations
- Cannot simply compare regions of fixed shape (circles, rectangles) – shape is not preserved under affine transformations

Interest points: From stereo to recognition

- Feature detectors previously used for stereo, motion tracking
- · Now also for recognition
 - Schmid & Mohr 1997
 - Harris corners to select interest points
 - Rotationally invariant descriptor of local image regions
 - Identify consistent clusters of matched features to do recognition

Matching with Features

Detect feature points in both images

• Find corresponding pairs

Matching with Features

- Detect feature points in both images
- Find corresponding pairs

(Good) invariant local features

- Reliably detected
- Distinctive
- Robust to noise, blur, etc.
- Description normalized properly

Key idea of invariance

We want to extract the patches from each image *independently*: features should adapt their shape, *covariant* with the affine transformation relating them.

Slide adapted from T. Tuytelaars ECCV 2006 tutoria

Scale selection principle

- Intrinsic scale is the scale at which normalized derivative assumes a maximum -- marks a feature containing interesting structure. (T. Lindeberg '94)
 - → Maxima/minima of Laplacian

Scale invariant detection

Requires a method to repeatably select points in location and scale:

- Only reasonable scale-space kernel is a Gaussian (Koenderink, 1984; Lindeberg, 1994)
- An efficient choice is to detect peaks in the difference of Gaussian pyramid (Burt & Adelson, 1983; Crowley & Parker, 1984)
- Difference-of-Gaussian is a close approximation to Laplacian

Slide adapted from David Lowe

Scale Invariant Detection: Summary

- Given: two images of the same scene with a large *scale difference* between them
- Goal: find *the same* interest points *independently* in each image
- Solution: search for maxima of suitable functions in scale and in space (over the image)

Affine Invariant Detection Maximally Stable Extremal Regions (MSER) - Threshold image intensities: I > I_0 - Extract connected components ("Extremal Regions") - Seek extremal regions that remain 'Maximally Stable" under range of thresholds

Matas et al. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. BMVC 2002.

[Images from T. Tuytelaars]

SIFT properties

- · Invariant to
 - Scale
 - Rotation
- · Partially invariant to
 - Illumination changes
 - Camera viewpoint
 - Occlusion, clutter

Background subtract for model boundaries Objects recognized, though affine model not as accurate.

Recognition in spite of occlusion

Value of local (invariant) features

- Complexity reduction via selection of distinctive points
- Describe images, objects, parts without requiring segmentation
 - Local character means robustness to clutter, occlusion
- Robustness: similar descriptors in spite of noise, blur, etc.

Local features will be something we can match across images...

What possible models for objects and categories can be formed with local descriptors as the basis?

1.Feature detection and representation

- Regular grid
- Interest point detector
- · Other methods
 - Random sampling
 - Segmentation based patches

Next time

- · Topic: visual vocabularies
- Presenter: Joseph
- Demo: Xin
- Papers to read (review one):
 - Sampling Strategies for Bag-of-Features Image Classification. E. Nowak, F. Jurie, and B. Triggs. ECCV, 2006.
 - Fast Discriminative Visual Codebooks using Randomized Clustering Forests, by A. Moosmann, B. Triggs and F. Jurie. NIPS, 2006.
 - Scalable Recognition with a Vocabulary Tree, by D. Nister and H. Stewenius. CVPR, 2006.