Learning about images from keyword-based Web search

CS 395T: Visual Recognition and Search
February 15, 2008
David Chen

Problems with traditional training data for object recognition

• Time-consuming and difficult to construct
 • Collect
 • Annotate
 • Align
 • Crop
• Bias in the types of images
• Does not reflect images encountered in the real world
Problems with traditional training data for object recognition

Collecting images from the Web

- **Pros**
 - Large scale of freely available images
 - More representative of real-world images

- **Cons**
 - Lack of annotations
 - Data extremely noisy
Flickr Commons

mechanics, America, civil air patrol base, Maine, vintage, 1940s, historical photographs, slide film, 4x5, large format, LF, transparencies, transparency, CAP, Civil Air Patrol, Bar Harbor, Bar Harbor, ME, maintenance, rotary engine, propeller, fixed gear

General framework for object recognition

1. Gather raw data
2. Filter and rank data
3. Train classifier
General framework for object recognition

Gather raw data

Filter and rank data

Train classifier

Gathering raw data

- Image search engine
 - Extremely noisy
- Text search engine
 - Fairly robust result
 - Does not always return images
- Application-specific database
 - Bootstrapped to index the entire Web (Yeh, Tollmar, Darrell. CVPR 2004)
Image search engine

- Search with desired category name
- Search with additional words
 - Monkey zoo, monkey animal, monkey primate, monkey wild, monkey banana, etc
- Search in translated terms
 - Chinese, French, Spanish, Korean, etc
Image search engine

Search in translated terms

<table>
<thead>
<tr>
<th>Language</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flugzeug</td>
<td></td>
</tr>
<tr>
<td>Aeroplane</td>
<td></td>
</tr>
<tr>
<td>Avion</td>
<td></td>
</tr>
<tr>
<td>Avião</td>
<td></td>
</tr>
<tr>
<td>Airplane</td>
<td></td>
</tr>
</tbody>
</table>

Text search engine

- Similar searching methods as image search engines
- Crawl returned pages for images
- Follow links on returned pages
Application-specific database

• A relatively small database of images
• Designed for quick image-based search
• Extract keywords from returned web pages
• Use extracted keywords to search text-based search engines

MIT, story, engineering, kruckmeyer, boston, foundataion relations, MIT dome, da lucha, view realvideo, cancer research
General framework for object recognition

1. Gather raw data
2. Filter and rank data
3. Train classifier

Removing Abstract Images

- Abstract images don’t look like realistic natural images
 - Drawings, non-realistic paintings, comics, casts or statues
- Difficult to do automatically
Removing Abstract Images

Train a SVM on hand-labeled dataset
(Schroff, Criminisi, Zisserman. ICCV 2007)

Drawings & Symbolic

Non Drawings & Symbolic

Ranking Images

• Use classifiers to rank the images
• Need data to train classifiers
• Train on a subset of higher precision data
• Build generic classifiers
General framework for object recognition

Gather raw data

Filter and rank data

Train classifier

Features

Text
- Keyword used to search for the image
- HTML tag
- Context
- File name, directory

Image
- Kadir & Brady saliency operator
- Multi-scale Harris detector
- Difference of Guassians
- Edge based operator
Feature Representations

<table>
<thead>
<tr>
<th>Text</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Binary Features</td>
<td>• SIFT</td>
</tr>
<tr>
<td>• TF-IDF</td>
<td>• Color histogram</td>
</tr>
<tr>
<td>• Learning related words associated with the category</td>
<td>• Energy spectrum</td>
</tr>
<tr>
<td>– Using LDA (Berg, Forsyth. CVPR 2006)</td>
<td>• Wavelet decompositions</td>
</tr>
</tbody>
</table>

Classifiers

- Bayesian network
- Hierarchical Bayesian text models
 - probabilistic Latent Semantic Analysis (pLSA)
 - Latent Dirichlet Analysis (LDA)
 - Hierarchical Dirichlet Processes (HDP)
- SVM
- Multiple instance learning (Vijayanarasimhan, Grauman. UTCS Tech report 2007)
Hierarchical Bayesian text models

Probabilistic Latent Semantic Analysis (pLSA)

Latent Dirichlet Allocation (LDA)

Hierarchical Bayesian text models

Probabilistic Latent Semantic Analysis (pLSA)
Hierarchical Bayesian text models

Probabilistic Latent Semantic Analysis (pLSA)

Sivic et al. ICCV 2005
Hierarchical Bayesian text models

Probabilistic Latent Semantic Analysis (pLSA)

Latent Dirichlet Allocation (LDA)
Hierarchical Bayesian text models

Latent Dirichlet Allocation (LDA)

beach images

$p(w_i | d_j) = \sum_{k=1}^{K} p(w_i | z_k) p(z_k | d_j)$

pLSA model
Recognition using pLSA

\[z^* = \arg \max_z p(z \mid d) \]

\[L = \prod_{i=1}^{M} \prod_{j=1}^{N} P(w_i \mid d_j)^{n(w_i, d_j)} \]

Maximize likelihood of data using EM

- \(M \) ... number of codewords
- \(N \) ... number of images
task: face detection – no labeling

Demo: feature detection

- Output of crude feature detector
 - Find edges
 - Draw points randomly from edge set
 - Draw from uniform distribution to get scale
Demo: learnt parameters

- Learning the model: `do_plsa('config_file_1')`
- Evaluate and visualize the model: `do_plsa_evaluation('config_file_1')`

Codeword distributions per theme (topic) $p(w | z)$

Theme distributions per image $p(z | d)$

Demo: recognition examples

Correct – Image 1: $P(z|d) > 0.9506$: 0.8538

Correct – Image 2: $P(z|d) > 0.9333$: 0.8538

Correct – Image 3: $P(z|d) > 0.9333$: 0.8538

Correct – Image 4: $P(z|d) > 0.9333$: 0.8538
pLSA example

Fergus, Fei-Fei, Perona, Zisserman, ICCV 2005

pLSA example

Fergus, Fei-Fei, Perona, Zisserman, ICCV 2005
pLSA extensions

• Extended to incorporate position information (Fergus, Fei-Fei, Perona, Zisserman. ICCV 2005)
 – Absolute position pLSA
 – Translation and scale invariant pLSA

• Foreground and background distributions (van de Weijer, Schmid, Verbeek. ICCV 2007)

pLSA extensions

• User interaction to select relevant topics (Berg, Forsyth. CVPR 2006)

• Optional step to correct erroneous examples
 – Makes the results better when dataset is small

• Requires human in the loop
pLSA shortcomings

• Need to estimate number of topics
• Need to select which topic to use as classifier
• Does not always converge to the desired categories

Support Vector Machines

• Soft margin
• Robust to noise
• Attempt to maximize the margin

![Diagram showing small margin vs large margin with support vectors](image)
Multiple instance learning

- Robust to noisy training data
- Training data consists of bags of examples
- Positive bags contain at least one positive example
- Negative bags contain no positive examples

Combining text and image features

- Schroff, Criminisi, Zisserman. ICCV 2007
- Rank images using text features first
- Train image classifier on the top-ranked images
Combining text and image features

• Berg, Forsyth. CVPR 2006
• Voting-based approach
• Weigh score contributions from text and image classifications

General framework for object recognition

- Gather raw data
- Filter and rank data
- Train classifier
Iterative training

- Use the trained classifier to filter the training data
- Better training data leads to better classifiers

Applications

- Building large datasets of images
- Ranking images from search results
- Building object recognition systems for many categories
- Learning color names
- Location recognition
Roadblocks

- Polysemy
 - Indiscriminative query terms
- Difficult images
 - Abstract images
 - Occlusions, clutter, variable lighting
 - Small portion of the image

Polysemy

Images related to the category

“Airplane”
Polysemy

Category names refer to several concepts

“Tiger”

Conclusion

• Gather large amounts of images from Web
• Filter the results using both textual and visual information
• Build classifiers from filtered results
• Optionally reiterate the process
• Provides realistic training and testing data for object recognition
• Still faces many challenging problems
Semantic Robot Vision Challenge

- First contest was held at AAAI 2007
- Robot League
 - UBC LCI Robotics from University of British Columbia
 - Terrapins from University of Maryland
 - KSU Willie from Kansas State University
 - Sunflowers from University of Washington
- Software League
 - UIUC-Princeon
 - KSU Willie from Kansas State University

Object List

Crawl the Web for data

Classifier
Semantic Robot Vision Challenge

1. scientific calculator
2. Ritter Sport Marzipan
3. book "Harry Potter and the Deathly Hallows"
4. DVD "Shrek"
5. DVD "Gladiator"
6. CD "Hey Eugene" by Pink Martini
7. fork
8. electric iron
9. banana
10. green apple
11. red bell pepper
12. Lindt Madagascar
13. rolling suitcase
14. red plastic cup
15. Twix candy bar
16. Tide detergent
17. Pepsi bottle
18. yogurt Kettle Chips
19. upright vacuum cleaner

Semantic Robot Vision Challenge

- Relatively small number of images used
 - Specific objects: 3 – 15
 - General objects: 20 - 40
- Commercial images desired
 - Use blacklist to exclude amateur photos
 - Build detector of homogenous, monochromatic background
- Graphic filter
- Rank images base on intra-class similarity and inter-class dissimilarity
Semantic Robot Vision Challenge

Robot League

<table>
<thead>
<tr>
<th>University</th>
<th>Points</th>
<th>Images Returned</th>
<th>Non-zero overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of British Columbia</td>
<td>13</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>University of Maryland</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Kansas State University</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Software League

<table>
<thead>
<tr>
<th>Princeton-UIUC</th>
<th>Points</th>
<th>Images Returned</th>
<th>Non-zero overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Kansas State University</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

CD “Hey Eugene” by Pink Martini
DVD “Gladiator”

Pepsi bottle
red bell pepper

red plastic cup
Discussion topics

• How to deal with polysemy
• Different ways of combining textual and visual information
• How to deal with difficult images
 – Prune them
 – Better object recognition algorithms
• Better algorithms for building classifiers from noisy data