Text/Speech & Images/Video

Presented By:
Sonal Gupta
March 7, 2008
Introduction

- New area of research in Computer Vision
- Increasing importance of text captions, subtitles, speech etc. in images and video
- Additional modality (view) can help in clustering, classifying, retrieving images and video frames -- otherwise ambiguous
- Newer area, no extensive comparison between techniques
Objectives

- Retrieve shots/clips in a video containing a particular person
- Retrieve images containing a common object

Julia Roberts in Pretty Woman
• Automatically annotate objects in an image/frame
• Classify an image

Which hockey team?
• Cluster images using associated text, which otherwise is very hard.
• Build a lexicon for image vocabulary

- sun
- sky
- cat
- horse
Why We Need Multi-Modality??
When text alone is used...
And we know about images too...
How can text and speech help?

- Can help disambiguate things
- Can act as an additional view or modality and help in increasing accuracy
Combinations people have tried

- Image + Text
- Video + Text (Subtitles, Script)
Different Aims

• Text used for labeling blobs/images
 ◦ Eg. label faces in images/videos

• Joint Learning – Images and Text help each other
 ◦ to classify other images based on image features or text
 ◦ to form clusters
 ◦ Eg. Co–Clustering, Co–training
Further classification on the basis of available ‘Data Association’ – Highest to Lowest

- Learn an image lexicon, each blob is associated with a word – input is segmented images and noiseless words (Dugyulu et. al., ECCV ‘02)
- Naming faces in images – input is frontal faces and proper names (Berg et. al., CVPR ‘04)
- Naming faces in videos – input is frontal faces; know who is speaking and when (Everingham et. al, BMVC ‘06)
- Learning Appearance models from noisy captions (Jamieson et. al., ICCV ‘07)
Further classification on the basis of available ‘Data Association’ – Highest to Lowest

- Learn an image lexicon, each blob is associated with a word – input is segmented images and noiseless words (Dugyulu et. al., ECCV ‘02)

- Naming faces in images – input is frontal faces and proper names (Berg et. al., CVPR ‘04)

- Naming faces in videos – input is frontal faces; know who is speaking and when (Everingham et. al., BMVC ‘06)

- Learning Appearance models from noisy captions (Jamieson et. al., ICCV ‘07)
Building Image Lexicon for Fixed Image Vocabulary

• Use training data (blobs + words) to construct a probability table linking blobs with word tokens

• We have image segments and annotated words but which word corresponds to which segment??

P. Duygulu et. al., Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary, ECCV 2002
• Ambiguous correspondences but can be learned by various examples
• Get segments by Image Processing

Sun Sky Waves Sea

Cluster features by k-means
Assign probabilities – each word is predicted with some probability by each blob.

\[\sum_{i=1}^{B_s} p(a_1 = i) = 1 \]
• Use Expectation–Maximization based approach to find probability of a word given a segment

Given the translation probabilities, estimate the correspondences

Given the correspondences, estimate the translation probabilities
Initialization

Initialize translation table to blob-word cooccurrences (empirical joint distribution of blobs and words)
EM algorithm

E step: Predicting correspondences from translation probabilities (for one pair)

- Translation probabilities
- Correspondences

```
<table>
<thead>
<tr>
<th></th>
<th>w1</th>
<th>w2</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
{ b1  b3  b4  
  w1  w5  
  b2  b1  b5  
  w1  w2  w4  
  b1  b2    
  w1  w2  w6  
  ...     }
```
EM algorithm

M step: Predicting translation probabilities from correspondences (for one pair)

correspondences

```
<table>
<thead>
<tr>
<th>b1</th>
<th>b3</th>
<th>b4</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>w5</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>b2</th>
<th>b1</th>
<th>b5</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>w2</td>
<td>w4</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>b1</th>
<th>b2</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>w2</td>
</tr>
</tbody>
</table>
```

...
Corel Database

392 CD’s, each consisting of 100 annotated images.
Labeling Regions

On a new image

• Segment the image
• For each region
 • Find the blob token
 • Look at the word posterior given the blob
Labeling Regions

Display only maximal probable word
Measuring Annotation Performance

Actual Keywords
- Grass
- Tiger
- Cat
- Forest

Predicted Words
- Cat
- Horse
- Grass
- Water
More can be done..

Find good features to distinguish currently indistinguishable words

propose merging depending upon posterior probabilities
Important Points

• High Data Association

• One-to-one association of blobs and words

• What about universal lexicon?

• Input is not very practical
Further classification on the basis of available ‘Data Association’ – Highest to Lowest

- Learn an image lexicon, each blob is associated with a word – input is segmented images and noiseless words (Dugyulu et. al., ECCV ‘02)

- Naming faces in images – input is frontal faces and proper names (Berg et. al., CVPR ‘04)

- Naming faces in videos – input is frontal faces; know who is speaking and when (Everingham et. al, BMVC ‘06)

- Learning Appearance models from noisy captions (Jamieson et. al., ICCV ‘07)
President George W. Bush makes a statement in the Rose Garden while Secretary of Defense Donald Rumsfeld looks on, July 23, 2003. Rumsfeld said the United States would release graphic photographs of the dead sons of Saddam Hussein to prove they were killed by American troops. Photo by Larry Downing/Reuters

British director Sam Mendes and his partner actress Kate Winslet arrive at the London premiere of "The Road to Perdition", September 18, 2002. The film stars Tom Hanks as a Chicago hit man who has a separate family life and co-stars Paul Newman and Jude Law. REUTERS/Dan Chung

Berg et. al., *Names and Faces in the News*, CVPR 2004
Names and Faces in the News

- Goal: Given an image from the news associated with a caption, detect the faces and annotate them with the corresponding names
- Worked with frontal faces and easy to extract proper names
Names and Faces in the News

Extract Names from the captions

Detect faces, rectify them, perform kPCA + LDA

Cluster the faces. Each cluster represents a name

Prune the clusters
Extract Names

- Identify two or more capitalized words followed by present tense verb (?)
- Associate every face in the image to every name extracted
Face Detection

- Face detector by K. Mikolajczyk
 - Extract 44,773 faces!
- Biased to Frontal Faces that rectify properly – Reduced the number of faces
Rectification

- Train 5 SVMs as feature detectors
- Weak prior on location of each feature
- Determine affine transformation which best maps detected points to canonical features
Each image has

- an associated vector given by the kPCA + LDA process
- set of extracted names
Modified K-means clustering

Randomly assign each image to one of its extracted names

For each distinct name (cluster), calculate mean of image vectors in the cluster

Reassign each image to closest mean of its extracted names

Repeat until convergence
Experimental Evaluation

- Different evaluation method
- Number of bits required to
 - Correct unclustered data – if the image does not match to any of the extracted names
 - Correct clustered data
Important Points

- Frontal Faces
- Easily extracted proper names
- Can use text in a better way? Who is left? Who is right?
- Activity Recognition?
Further classification on the basis of available ‘Data Association’ – Highest to Lowest

- Learn an image lexicon, each blob is associated with a word – input is segmented images and noiseless words (Dugyulu et. al. ECCV ‘02)
- Naming faces in images – input is frontal faces and proper names (Berg et. al. CVPR ‘04)
- Naming faces in videos – input is frontal faces; know who is speaking and when (Everingham et. al. BMVC ‘06)
- Learning Appearance models from noisy captions (Jamieson et. al., ICCV ‘07)
“Hello... My Name is Buffy”

Annotation of person identity in a video

- Use of text and speaker detection as weak supervision – multimedia
- Use subtitles and script
- Detecting frontal faces only

Everingham et. al., “Hello! My name is... Buffy” – Automatic Naming of Characters in TV Video, British Machine Vision Conference (BMVC), 2006

Some slides borrowed from www.dcs.gla.ac.uk/ssms07/teaching-material/SSMS2007_AndrewZisserman.pdf
Problems

- Ambiguity: Is speaker present in the frame?
- If multiple faces, who actually is speaking?
Alignment

- Subtitles: What is said, When is said but Not WHO said it
- Script: What is said, Who said it but Not When is said
- Align both of them using Dynamic Time Warping
After Alignment

00:18:55,453 --> 00:18:56,086
Get out!

00:18:56,093 --> 00:19:00,044
- But, babe, this is where I belong.
- Out! I mean it.

00:19:00,133 --> 00:19:03,808
I've been doing a lot of reading,
and I'm in control of my own power now,...

00:19:03,893 --> 00:19:05,884
..so we're through.

00:19:00,044 --> 00:19:01,038
Get out.

00:19:01,044 --> 00:19:03,808
But, baby... This is where I belong.

00:19:03,813 --> 00:19:09,013
Out! I mean it. I've done a lot of reading, and, and I'm in control of my own power now. So we're through.
Ambiguity

- Knowledge of speaker is a **weak** cue that the character is visible

- Ambiguities will be resolved using vision-based speaker detection
Steps

• Detect faces and track them across frames in a shot
• Locate facial features (eyes, nose, lips) on the detected face
 ▪ Generative Model for feature positions
 ▪ Discriminative Model for feature appearance
Face Association

- Measure “connectedness” of a pair of faces by point tracks intersecting both
- Doesn’t require contiguous detections
- Independent evidence – no drift

KLT tracker

Tracking faces in spatio-temporal video volume

Automatically associated facial exemplars
Example of Face Tracks
Next Steps

- Describe the faces by computing descriptors of the local appearance around each facial feature
 - Two descriptors: SIFT, simple pixel wised

- Interesting result: Simple pixel wised performed better for naming task
 - SIFT is may be too much invariant to slight appearance changes -- important for discriminating faces
Clothing Appearance

- Represent Clothing Appearance by detecting a bounding box containing cloth of a person
 - Same clothes mean same person, but not vice-versa
Speaker Detection

- Subtitles/script gives the speaker’s name
 - Identify who (if anyone) in the video is speaking

In this frame, the subtitles/script says Willow is speaking. If this person is speaking, it must be Willow.
Speaker Detection

- Measure the amount of motion of the mouth
- Search across frames around detected mouth points
Resolved Ambiguity

- When the speaker (if any) is identified, the ambiguity in the textual annotation is resolved.
Exemplar Extraction

- Face tracks detected as speaking and with a single proposed name give exemplars

Buffy

2,300 faces

Willow

1,222 faces

Xander

425 faces

- Assign names to unlabelled faces by classification based on extracted exemplars
Classification by Exemplar Sets

- Classify tracks by nearest exemplar
- Estimate **probability** of class from distance ratios
 - Refuse to predict names for uncertain tracks
A video with name annotation
Important Points

- Frontal Faces
- Subtitles AND Script used as text
- Can do better than frontal face labeling? Activity Recognition?
Further classification on the basis of available ‘Data Association’ – Highest to Lowest

- Learn an image lexicon, each blob is associated with a word – input is segmented images and noiseless words (Dugyulu et. al., ECCV ‘02)

- Naming faces in images – input is frontal faces and proper names (Berg et. al., CVPR ‘04)

- Naming faces in videos – input is frontal faces; know who is speaking and when (Everingham et. al., BMVC ‘06)

- Learning Appearance models from noisy captions (Jamieson et. al., ICCV ‘07)
Learning Structured Appearance Models in Cluttered Scenes

About the algorithm

- an unsupervised method that uses language
 - discover salient objects
 - to construct **distinctive appearance models** from cluttered images paired with **noisy captions**.

- simultaneously learns appropriate names for the object models from the captions

- appearance model that captures the common structure among instances of an object

- uses pairs of points together with their **spatial relationships**
Describe the images…

• Each point p_m in an image is described:
 - Cartesian Position x_m, scale σ_m, orientation θ_m
 - f_m – encodes a portion of the image surrounding the point
 - Quantized descriptor c_m
 - Neighborhood n_m, set of spatial neighbors
 - $p_m = (f_m, x_m, \sigma_m, \theta_m, c_m, n_m)$
Build Appearance Model

- Build Appearance Model using graph \(G=(V,E) \)
- Each vertex \(v_i = (f_i, c_i) \)
 - \(c_i \) is a vector of indexes for the \(|c_i|\) nearest cluster centers to \(f_i \)
 - No spatial information
- Each edge encodes a spatial relationship between vertices
Energy Function

• Introduce an Energy Function \(H(G,I,O) \) that measures how well the observed instance \(O \) in image representation \(I \) matches the object appearance model \(G \)

• Low energy – Better matching
The occurrence pattern of a word w in the captions of k images

$$r_w = \{ r_{wi} | i = 1, \ldots, k \}$$

Occurrence of a model G

$$q = \{ q_{Gi} | i = 1, \ldots, k \}$$

If two occurrences are independent

Null Hypothesis H_0

If from a common hidden source object – H_C
Reflects the degree to which both word and model came from a common source

\[\text{Corr}(w, G) = \log \frac{P(r_w, q_G|H_C)}{P(r_w, q_G|H_0)} \]

\[P(r_w, q_G|H_C) = \prod_i \sum_{s_i} P(s_i) P(r_{wi}|s_i) P(q_{Gi}|s_i) \]

\[P(r_w, q_G|H_0) = \prod_i P(r_{wi}) P(q_{Gi}) \]

where \(s_i \in \{0,1\} \) represents presence of common-source in image-caption pair \(i \)
Words to learn appearance model

• Discovers strong correspondences between configurations of visual features and caption words
• Output – Set of appearance models, each associated with a caption word
Use Models to Annotate New Instances

- Uncaptioned and unseen test images
- For detection, use same algorithm as in learning
- To annotate, use the word associated with the learned object model
An Example

Detection of a model associated with the Toronto Maple Leafs. Observed vertices are in red; edges in green.
Some Interesting Detections

(a) Variations in Scale
(b) Alternate Sabres Appearance
(c) Minnesota Wild Arena (left)
(d) Detections of ‘vs’
Important Points

- Low data association
- Caption text ambiguous – but associated with only one word
- Structure of the features taken into account
Joint Learning

- Let’s move to another application of text and image – Joint Learning – text and images help each other out
 - Co–Clustering
 - Co–Training
Co-Clustering background

• Cluster images and features simultaneously
• Think of a 2-D matrix, cluster its rows and columns simultaneously
• Answers these questions:
 ◦ Why are certain images grouped together?
 ◦ What features do the images fall in the same cluster have in common?
• Represent as a bipartite graph
 ✷ one set with image features, another with images

• Apply any graph cutting algorithm
 ✷ Spectral Graph Partitioning is one of the most popular
 ✷ Each partitions contains correlated images and features
Clustering Web Images using Co-Clustering

• Web images clustering by simultaneous integration of visual and textual features
• Model visual features, images and words from surrounding text using a tripartite graph

Rege et. al., Clustering Web Images with Multi-modal Features, ACM Multimedia 2007
Tripartite Graph

- Visual Features
- Web Images
- Surrounding Text Words
• Consistent Isoperimetric High-Order Co-clustering framework (CIHC)

 • Efficient simultaneous integration of visual and texture features

 • Partition two bipartite graphs simultaneously using Isoperimetric Co-clustering Algorithm (ICA)-- Efficient co-clustering of document-words bipartite graph

 • Clustering of individual bipartite graph is not optimal but together it is
Let’s move to another application of text and image – help each other out

• Co-Clustering

• Co-Training
Co-Training with Images and Text Captions

- Co-Training – (Labeled+Unlabeled data)
- Consider image features and text features as two “views”
- Assumption:
 - The views are conditionally independent -- satisfied
 - Both views should be sufficient to label instances -- sometimes not satisfied
- Build two classifiers from each view
- Each classifier labels some unlabeled instances on which they are most confident and add to the training set
- Improve both classifiers and then combine their predictions on test set
Dataset

• Tested on binary classes – Desert and Trees

(a) Caption: Ibex in Judean Desert
(b) Caption: Ibex eating in the Nature
Results

Better than Supervised
Results

And better than other semi-supervised!
Discussion

• What other modality can we use with images and videos, other than speech and text?
• What can be other combinations/areas in which we can use multimodality of images and videos?
• Can we use videos and speech frequency to decide who is speaking?
• How can we use frame contents and subtitles/script to understand gestures in a video?
• We, humans, use multi-modality of data every time – e.g. recognizing people by face and voice. What makes humans so good? Would we be able to reach that stage?
• Talking of humans, can we use Neural Nets in this area? How?
More Discussion Points

- In building lexicon, what other algo than EM can be used? Joint Learning?
- What about universal lexicon?
- In naming faces, how can we use language cue in a better way?
- With the help of text can we help object recognition and activity recognition help each other? (Recognizing act of drinking and the coffee mug)
- Can using multi-modality of data hurt? When?
- Are we aiming too much, when we are not even good at individual things?
Extra Slides
kPCA+LDA

- **kPCA** – Kernel Principal Component Analysis – reduces dimensionality
 - Gaussian Kernel K, K_{ij} comparing image$_i$ and image$_j$
- **LDA** – Linear Discriminant Analysis – project data into a space suited for the discrimination task
 - Uses class information
 - Finds a set of discriminants that push means of different classes away from each other
Names and Faces – Errors

Apart from wrong assignment
Names and Faces – Pruning

• Throw away points that have low likelihood
• Merge clusters with different names but same person
 ◆ Look distance between the means in discriminant coordinates
Lexicon – Improving the System

- Refuse to predict
 - if \(p(\text{a word given the blob}) < \text{threshold} \)
- Merge synonyms
 - locomotive & train