Experiments on Densely Sampling

Xin Sui

Three random sampling methods

Non-Overlapping

Overlapping

Random-Overlapping

Process Flow

1. Compute_Descriptor.In: Given region, compute the sift descriptor http://www.robots.ox.ac.uk/

2. LibSvm

a convenient SVM tool http://www.csie.ntu.edu.tw/~cjlin/libsvm/ SVM: RBF Kernel With gamma set to the median of the pairwise distances between the training descriptors

Sampling

- Step 1: Generating regions files
 - Ellipse Region
 - a(x-u)(x-u)+2b(x-u)(y-v)+c(y-v)(y-v)=1
 - $\begin{array}{c} & \underline{\text{format:}} \\ 1.0 \\ m \\ u_1 v_1 a_1 b_1 c_1 \\ \vdots \\ u_m v_m a_m b_m c_m \end{array}$
- Step 2, call Compute_descriptor. In to generate sift descriptor files
- •
- Descriptor output

 $\begin{array}{c} - & \underline{\text{format:}} \\ N \\ m \\ u_1 v_1 a_1 b_1 c_1 d_{1,1} d_{1,2} d_{1,3} \dots d_{1,N} \\ \vdots \\ u_m v_m a_m b_m c_m d_{m,1} d_{m,2} d_{m,3} \dots d_{m,N} \end{array}$

Dataset

- Pascal VOC 2005
 - Four Categories
 - Binary classification

	Motorbikes	Bicycles	People	Cars
Training	214	114	84	272
Test(test 1)	216	114	84	275

Results (200 words)

 Accuracy (correct predictions/the total test examples)

	Motorbikes	Bicycles	Cars
Non-Overlap	82.148%	85.0508%	80.4064%
	(566/689)	(586/689)	(554/689)
Overlap-rand	79.6807% (549/689)	Predict negative for almost all images	78.2293% (539/689)
Overlap-big	87.8084%	88.5341%	84.0348%
	(605/689)	(610/689)	(579/689)

ROC curves_motorbike

ROC curves_cars

ROC curves_bikes

Overlap_rand: predicting negative for most of all test images

Overlap-big

ROC curves_people

Overlap_rand: predicting negative for most of all test images Non-Overlap: predicting negative for most of all test images

Conclusion

- According to the above experiment, it seems:
 - Uniformly distributed patches with overlapping seems better
 - Uniformly distributed patches are better than random distributed patches