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What is Context?

» Linguistically, Context refers to the
conditions in which something exists or
occurs.

» Context can be recursive!




Examples of context:

What does “compound” mean in these
examples?

.



Examples of context:

What does “compound” mean in these
examples?

» The villain’s compound is heavily guarded.

» She suffered a compound fracture from the
fall.




Examples of Context (contd)




Examples of Context (contd)




What is it good for?

» Lets computers understand an object or
scene in the same way it can help humans
understand a word in a sentence.

» Determining what objects are, even if the
object can exist separately of the context.

» Generally, context determines priors on
object interpretations.
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» Learning Spatial Context: Using Stuff to Find
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.



Types of Context

» Scene-Thing

> scale

> “gist”

- Determines priors for objects
» Thing-Thing

- Object cooccurrence

» Stuff-Stuff

- E.g. beach, water

» Stuff-Thing

- Texture regions relative to objects
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Thing and Stuff Context

» Things in the context of stuff, and vice versa.

» Components:
> Things (T)
- Feature descriptors for windows (W)
- Feature descriptor for regions (F)
- Stuff classes for regions (S)
- Relationship indicator variables (R)




Things

Discrete Objects
Have specific size and shape.
Generally mobile

v Vv Vv

Examples:
o Car

> Person

> Bicycle

v

In TAS:

o Detected with local window detectors [Heitz 2008]

v




Stuff

Generally immobile
Shapeless

Examples:
- Road
> Buildings

v Vv Vv

In TAS:

- Labeled regions defined by
superpixels

- Assumed to be independent of each
other.

v

. . : Heitz 2008
Satellite Regions < °%%%

> Labeled by the homogeneous or
repetitive pattern of fine-scale
properties




Relationships

» Describes a possible relation between a Stuff and a
Thing

» Large number of candidate relations are generated,
best are picked algorithmically

» Examples:
- Thing Above Stuff
- Thing Right of Stuff
> Thing In Stuff

» K possible relationships are mapped to all | * ]
Thing/Stuff combinations, for a total of I*J*K
relationship indicator variables.
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Modular representation

» Keeps complexity down
- Things only depend on Stuff, not other things.
> Stuff only depends on things.

P(T.S,F,R|W) HPT|H HP P(F; | S;) | [ P(Rijx | T:.S;)
i1k

- All probabilities are drawn from simple table
conditional probability distributions (CPDs).

» In reality, thing/things and stuff/stuff are not
independent, but the probability distribution
becomes modular.




Training Initialization

» Stuff

> Clustered based on detected features from
Superpixel regions

» Things
- Local object detector is trained from annotated
training set

» Relationships
- Potential relationships manually defined
- All are initially inactive




Training Algorithm

Algorithm LearnTAS
Input: Candidate relationships C, Dataset D = {(W |m/|, T'|m]|, F[m|, R|m])}
R «— 0 (all relationships “inactive”)
Repeat until convergence
Repeat until convergence (EM over Parameters)
E-step: Qm| — P(S |T,F,R;0r) Vm
M-step: Or «— argmaxEq [>. (S, T,F,R|W;0z)]
Repeat until convergence (Greedy Structure Search)
Forall k, score, =Y., UT | F,R;0rgi) (score with k “activated”)
R—RPE" where k* = argmax score
Return Set R of “active” relationships, TAS parameters Or

Fig. 4. Learning a TAS model. Here ¢ represents the log-likelihood of the data, and ¢
represents the set exclusive-or operation.

[Heitz 2008]




Training Algorithm

Algorithm LearnTAS
Candidate relationships C, Dataset D =
R «— 0 (all relationships “inactive”
Repeat until convergence
Repeat until convergence (EM over Parameters)
E-step: Qm| — P(S |T,F,R;0r) Vm
M-step: Or «— argmaxEq [>. (S, T,F,R|W;0z)]
Repeat until convergence (Greedy Structure Search)
Forall k, score, =Y., UT | F,R;0rgi) (score with k “activated”)
R—RPE" where k* = argmax score
Return Set R of “active” relationships, TAS parameters 6

Candidate relationships arbitrarily generated.
Priors for Stuff given Features generated from clustering.




Training Algorithm

Algorithm LearnTAS
Input: andidate relationshin Dataset D = {(W [m], T'|m|, F|m|, R[m|)}
% 0 al rlationship “inacine’)
€peat until convergence
Repeat until convergence (EM over Parameters)
E-step: Qm| — P(S |T,F,R;0r) Vm
M-step: Or «— argmaxEq [>. (S, T,F,R|W;0z)]
Repeat until convergence (Greedy Structure Search)
Forall k, score, =Y., UT | F,R;0rgi) (score with k “activated”)
R—RPE" where k* = argmax score
Return Set R of “active” relationships, TAS parameters 6

All relationships begin inactive.
There is a likelihood on how many relationships can become active.




Training Algorithm

Algorithm LearnTAS
Input: Candidate relationships C, Dataset D = {(W |m/|, T'|m]|, F[m|, R|m])}
R «— 0 (all relationships “inactive”)
Repeat until convergence
Repeat _until convergence (EM over Parameters)
E-step: Q[ | — P(S|T,F,R; 9;:2) vm
-step: Or — argmax LR | W; 9;:2)]
Repeat until convergence (Greedy Structure Search)
Forall k, score, =Y., UT | F,R;0rgi) (score with k “activated”)
R—RPE" where k* = argmax score
Return Set R of “active” relationships, TAS parameters 6

Use model and Ground Truth to estimate most likely Stuff classifications.
Q is the probability of the Stuff classes.
m is set of training images.




Training Algorithm

Algorithm LearnTAS
Input: Candidate relationships C, Dataset D = {(W |m/|, T'|m]|, F[m|, R|m])}
R «— 0 (all relationships “inactive”)
Repeat until convergence
Repeat until convergence (EM over Parameters)

Forall k, scorey = Zm T \ F. R; QR@k) (Score with k “activated”)
R—RPE" where k* = argmax score
Return Set R of “active” relationships, TAS parameters 6

Pick model (collection of CPDs) that makes observed data (Things) and
estimated data (Stuff) most probable.




Training Algorithm

Algorithm LearnTAS
Input: Candidate relationships C, Dataset D = {(W |m/|, T'|m]|, F[m|, R|m])}
R «— 0 (all relationships “inactive”)
Repeat until convergence
Repeat until convergence (EM over Parameters)
E-step: Qm| — P(S |T,F,R;0r) Vm
M-step: Oz «— argmaxFEo (S, T.F.R|W:0r

Repeat until convergence (Greedy Structure Search)
Forall k, scorer, =Y., UT | F,R;0rgk) (score with k “activated”

where k* = argmax score
Return e ol ~active relationships, TAS parameters Og

Greedy structural search over all possible relationships.
Add one or subtract one, and figure out which change helped the most.




Training Algorithm

Algorithm LearnTAS
Input: Candidate relationships C, Dataset D = {(W |m/|, T'|m]|, F[m|, R|m])}
R «— 0 (all relationships “inactive”)
Repeat until convergence
Repeat until convergence (EM over Parameters)
E-step: Qm| — P(S |T,F,R;0r) Vm
M-step: Or «— argmaxEq [>. (S, T,F,R|W;0z)]
Repeat until convergence (Greedy Structure Search)
Forall k, score, =Y., UT | F,R;0rgi) (score with k “activated”)
R—RIE" where k£* = argmax score;

Return Set R of “active” relationships, TAS parameters 0

Return the complete model!




Classifying things:

Now that we have our model, we want to use it to classify things:

P(T |F.RW)=)» P(T.S|F,R W)
S

But, this is different from training because now Thing classes
are unobserved as well as Stuff classes.

So finding this involves computing all possible combinations
of Things and Stuff in the entire image!




P(T|F,R,W)=) P(T,S|F,RW)

Things + Stuff

Features
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What to do?

» Try Gibbs sampling:
- Variant of Markov Chain Monte Carlo (MCMCQC)

- Assume all but one parameters, estimate that
parameter from others given data.

- Repeat until convergence

Before. With Gibbs:
Stuff €= Things Stuff Things

./




Gibb’s Sampling

P(T |F,RW)=) P(T,S|F.R.W)
S

becomes

P(S; | T.F,R,W) x P(S;)P(F; | S;) [[ P(Riji | T3 S)
ik

P(T; | S.F.R.W) x P(T; | W;) | | P(Rji | T5. S)).
7k

iterated until convergence




P(T|F,R,W)=) P(T,S|F,RW)

Things + Stuff

Features
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Conditional dependence of things on things and stuff on stuff

makes it computationally intractable!
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J ust Th in gs P(T;| S.F.R.W) x P(T; | W) [ P(Rysx | T.. )

ik

Stuff Features
Windows  Things o

R3,J,K

Computing Thing probabilities becomes linear on the number of
Thing candidates!




Just Stuff P(S; | T.F.RW) x P(S,)P(F; | $) [T P(Rige | T2 )
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Computing stuff probabilities becomes linear
on the number of regions!



Experiments:

VOC2005 dataset:

o 2232 images
> manually annotated bounding boxes for:
Cars
People
Motorbikes
Bicycles

A4

VOC2006 dataset:

° 2686 images

> manually annotated bounding boxes for:
Cows
Sheep

v

v

Bonus feature: Satellite Imagery

Source code available
- Website: http://ai.stanford.edu/~gaheitz/Research/TAS/
> Includes all data from experiments

v




Exam Dle Detectlons
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Fig. 5. (a,b) Example training detections from the bicycle class, with detection win-
dows outlined by the green rectangles. The image regions with active relationships to
the detection window are outlined in red. (c) 16 of the most representative regions
for cluster #3. This cluster corresponds to “roads” or “bushes” as things that are
gray/green and occur near cars. (d) A case where context helped find a true detection.
(e,f) Two examples where incorrect detections are filtered out by context.

[Heitz 2008]
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(TAS - Base)
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0.034
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[Heitz 2008]




Satellite Experiment

» Training/ Test Data:

> 30 raw images pulled from Google Earth of size
792x636

- Contain 1319 Hand-tagged cars

» Tested with 5-fold cross-validation

» Note that orthographic projection of plane
aligned objects means objects are:
> scale invariant
> viewpoint invariant
> but not rotationally invariant
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Learned Satellite Clusters
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Satellite Results
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Fig. 8. Example image, with detections found by the base detector (a), and by the
TAS model (b) with a threshold of 0.15. The TAS model filters out many of the false
positives far away from roads. (c) shows a plot of recall rate vs. false positives per
image for the satellite data. The results here are averaged across 5 folds, and show a
significant improvement from using TAS over the base detectors.

[Heitz 2008]
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Perspective

Computer’s Understanding of Scene:

Without Perspective With Perspective

(well, almost)

Paper Mario,
(c) Nintendo




Determining object height




Putting Objects in Perspective

» Statistical Framework that allows
simultaneous inference between:
- Camera viewpoint
- Object identities (Things)
> Surface orientations (Geometry)




Camera

» Denoted by 6

» Only two parameters:

> Ye : Height above ground
plane

- A priori height of 1.67m

(e) Viewpoint: Prior

> U0 : Vertical position of
horizon line.

- Initialized at 0.5

(f) Viewpoint: Full

[Hoiem 2006]




Things

» Detected by local object detector

» Based off of gist based object-detector of
Murphy, Torralba, and Freeman

[Hoiem 2006]




Geometry

» Based on the previous work Geometric
Context from a Single Image, also by Hoiem
et al

(a) Image (b) Ground

ic) Vertical

(d) Sky
[Hoiem 2006]



Model Breakdown

Viewpoint

Local Object Local Object
Evidence Objects Evidence

| P(giley)

P(gi)

[Hoiem 2006]



Experiment

» Test set consists of 422 random outdoor
images from the LabelMe dataset.

» The images contain 923 cars and 720
pedestrians.

» 60 images have no cars or pedestrians
» 44 have only pedestrians

» 94 have only cars

» 224 have both cars and pedestrians




ample Results

(e) Local Detection (e) Full Model Detection

[Hoiem 2006]



Sample Results
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(f) Local Detection (f) Full Modcl Detection

[Hoiem 2006]



Results:

Cars Pedestrians
1FP 5FP 10FP 1FP 5FP 10FP
+Geom 6.6% | 5.6% | 7.0% | 7.5% | 85% | 17%
+View 82% | 16% | 22% | 3.2% 14% | 23%
+GeomView | 12% | 22% | 35% | 7.2% | 23 % | 40%

Table 1. Modeling viewpoint and surface geometry aids object de-
tection. Shown are percentage reductions in the missed detection
rate while fixing the number of false positives per image.

[Hoiem 2006]




Results

Mean | Median
Prior 10.0% | 8.5%
+Ob;j 7.5% 4.5%
+ObjGeom | 7.0% 3.8%

Table 2. Object and geometry evidence improve horizon estima-
tion. Mean/median absolute error (as percentage of image height)
are shown for horizon estimates.

[Hoiem 2006]



Results

Horizon | Cars (FP) Ped (FP)
Car 7.3% 56 | 74 | — —
Ped 5.0% — | — | 124 | 13.7
Car+Ped 3.8% 501 6.6 | 11.0 | 10.7

Table 3. Horizon estimation and object detection are more accurate
when more object models are known. Results shown are using the
full model in three cases: detecting only cars, only pedestrians,
and both. The horizon column shows the median absolute error.
For object detection we include the number of false positives per
image at the 50% detection rate computed over all images (first
number) and the subset of images that contain both cars and people

(second number).

[Hoiem 2006]



Results
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Figure 6. Considering viewpoint and surface geometry improves results over purely local object detection. The left two plots show object
detection results using only local object evidence (Obj), object and geometry evidence (ObjGeom), objects related through the viewpoint
(ObjView), and the full model (ObjViewGeom). On the right, we plot results using the Dalal-Triggs local detector [6].

[Hoiem 2006]




Result Highlights

» Including viewpoint and surface geometry
estimates nets 20% reduction in false
negatives.

» Reduces horizon estimation error by 3%.

» Including more object types improves
performance.




Caveats

» Elevation:

- Has trouble with unusual object
placement, because it assumes
everything is on the ground plane.

Kill Bill, Miramax Films




Caveats (cont)

» Ground Slope:

“If the ground is sloped, as in Figure 2, the
coordinates and parameters are computed
with respect to that slope, and the
relationship between viewpoint and objects in
the image still holds.”

Maybe for cars, but people stand
upright regardless of local slope!

» Assumes things are 2D
billboards.




Thoughts

» Combine perspective context and stuff
context?

» Estimate angle of observed object for better
viewpoint estimation?
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