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NAMES AND FACES IN THE NEWS
� Aim: Given an input image and an associated 
caption, automatically detects faces in the image 
and possible name strings.

� Application: to label faces in news images or to 
organize news pictures by individuals present.
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DATASET
� half a million news pictures and captions from 
Yahoo News over a period of roughly two years.

� Obtained 44,773 face images
� more realistic than usual face recognition 
datasets
� it contains faces captured “in the wild” in a variety of configurations with respect to the camera, taking a variety of expressions, and under illumination of widely varying color. 8
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EXTRACT NAMES FROM THE CAPTION.Words are classified as verbs by first applying a list of morphological rules to present tense singular forms, and then comparing these to a database of known verbs.identifying two or more capitalized words followed by a present tense verb.This lexicon is matched to each caption. Each face detected in an image is associated with every name extracted from the associated caption 10



EXAMPLES
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FACE DETECTION &RECTIFICATION
� Face detector (K. Mikolajczyk) - biased to frontal faces 
� Rectify face to canonical pose.

• Geometric blur applied to grayscale patches
• 5 SVM (trained with 150 hand clicked faces)
• Determine affine transformation which best maps detected points to canonical positions

� Remove images with low rectification score 
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REPRESENT FACES
� kernel principal components analysis (kPCA)-to 
reduce the dimensionality of data 

� linear discriminant analysis (LDA) - to project 
data into a space that is suited for the 
discrimination task.
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MODIFIED K-MEANS CLUSTERINGRandomly assign each image to one of its extracted names For each distinct name (cluster), calculate the mean of image vectors assigned to that nameReassign each image to theclosest mean of its extracted namesRepeat until convergence 16



MERGING CLUSTERS
� Aim: different names that actually correspond to 
a single person.

� merge names that correspond to faces that look 
the same.
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THE DIFFICULTY OF FACE RECOGNITION

20
• scale, pose

• lighting

• partial 
occlusion

• expressions *slides from Andrew Zisserman



“HELLO! MY NAME IS... BUFFY”
� Aim - automatically label television or movie 
footage with the identity of the people present 
in each frame of the video.
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OBTAIN NAMES
� to extract an initial prediction of who appears in 

the video, and when.

� Subtitles-What is said, and when, but not who

says it

� Script-What is said, and who says it, but not 

when

� By automatic alignment of the two sources, it is 

possible to extract who says what and when. 23



ALIGNMENT BY DYNAMIC TIME WARPING
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DETECT AND TRACK FACES

� Face detector- by P. 
Viola and M. Jones. 
� Frontal face

� KLT tracker-point 
tracks
� Reduces the volume of data to be processed
� Allows stronger appearance models to be built for each character. 26*Pictures from Andrew Zisserman



FACE TRACKS

27*slides from Andrew Zisserman



REPRESENTING FACE APPEARANCE

28Representing Face(SIFT Descriptor or Simple pixel-wised descriptor)
Face normalization (Affine transform)

Locate facial features(Nine facial features eyes/nose/mouth)



REPRESENTING CLOTHING APPEARANCE

29
� Matching the appearance of the face can be extremely challenging; clothing can provide additional cues
� Represent Clothing Appearance by detecting a bounding box containing cloth of a person
� Similar clothing appearance suggests the same character, butdifferent clothing does not necessarily imply a differentcharacter
� Straightforward weighting of the clothing appearance relativeto the face appearance proved effective



SPEAKER AMBIGUITY
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SPEAKER DETECTION
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ASSIGN LABELS TO FACES

*Graphs from Andrew Zisserman 33

• Assign names to unlabelled faces by classification 
based on extracted exemplars

• Classify tracks by nearest exemplar
• Estimate probability of class from distance ratios
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MOVIE/SCRIPT: ALIGNMENT AND PARSING OF
VIDEO AND TEXT TRANSCRIPTION
� Aim: Automatically extracting large collections of 
actions “in the wild”

� Method: recovering scene structure in movies 
and TV series

� Application: semantic retrieval and indexing,
browsing by character or object, re-editing and 
many more.
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GENERATIVE MODEL FOR SCENE STRUCTURE
� This uncovered structure can be used to analyze 
the content of the video for tracking objects 
across cuts, action retrieval, as well as enriching 
browsing and editing interfaces.

� To model the scene structure, we propose a 
unified generative model for joint scene 
segmentation and shot threading.
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VIDEO DECONSTRUCTION
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ALIGNMENT
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� screenplay 
� Dialogues
� speaker identity, 
� scene transitions 
� no time-stamps

� closed captions
� Dialogues
� time-stamps 
� nothing else.



PRONOUN RESOLUTION AND VERB FRAMES
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ACTION RETRIEVAL
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� After pronoun resolution 
and verb frames, then 
matched to detected and 
named characters in the 
video sequence
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NOUNS: EXPLOITING PREPOSITIONS AND

COMPARATIVE ADJECTIVES FOR LEARNING

VISUAL CLASSIFIERS,

42
� Aim: to learn classifiers 
(i.e models) for nouns 
and relationships 
(prepositions and 
comparative adjectives).

above(statue,rocks);ontopof(rocks, water); larger(water,statue)



LEARNING RELATIONSHIPS
These classifiers are based on differential 
features extracted from pairs of regions in an 
image.
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FEATURES
� Each image region is represented by a set of 
visual features based on appearance and shape 
(e.g area, RGB).

� The classifiers for nouns are based on these 
features. 

� The classifiers for relationships are based on 
differential features extracted from pairs of 
regions such as the difference in area of two 
regions. 44



GENERATIVE MODEL
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Visual featurenouns nouns

Parameters of the appearance models
A type of relationshipParameters of therelationship model

Visual feature
Image features



46The rjk represent the possiblewords for the relationship between regions ( j, k).



EM-APPROACH
� to simultaneously solve for the correspondence 
and for learning the parameters of classifiers.

� E-step: evaluate possible assignments using the 
parameters obtained at previous iterations. 

� M-step: Using the probabilistic distribution of 
assignment computed in the E-step, we estimate 
the maximum likelihood parameters of the 
classifiers in the M-step. 47



INFERENCE
� use a Bayesian network to represent our labeling 
problem and use belief propagation for 
inference. 

� Previous approaches estimate nouns for regions 
independently of each other. Here they use 
priors on relationships between pair of nouns to 
constrain the labeling problem.
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LABELING NEW IMAGES
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near(birds,sea); below(birds,sun); above(sun, sea);larger(sea,sun);brighter(sun,sea);below(waves,sun)below(coyote, sky); below(bush, sky);left(bush, coyote);greener(grass, coyote);below(grass,sky)



LABELING NEW IMAGES
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below(building, sky); below(tree,building);below(tree, skyline); behind(buildings,tree);blueish(sky, tree)
above(statue,rocks);ontopof(rocks, water); larger(water,statue) below(flowers,horses); ontopof(horses,field); below(flowers,foals)



CONCLUSION
� Lots of data out there with both text and images 
� Text provides potential labels of images
� Scripts give cues about scene structure and 
actions performed

� Understanding the semantics of language can 
help in disambiguating labels
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DISCUSSION:

52
extract names wrong association

•What resources also contain both text and image?
•How can understanding languages help with the ambiguous labels?


