

### Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation

### Motivation

# <image>

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

## **Motivation** Example-based pose estimation ? http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Motivation



http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Motivation: Fast! Really Fast Needed!!!

50 Thousand Images



### 110,000,000 images Equals 8,800 Meters





### Overview

- Efficient Near-Duplicate Detection and Sub-Image Retrieval (Multimedia 2004)
  - Parts Based representation
  - LSH
  - Optimize the access on the Hard-Disk
- Scalable Recognition with a Vocabulary Tree (CVPR 2006)
  - Hierarchically quantized in vocabulary tree
- Fast Image Search for Learned Metrics (CVPR 2008)
  - Similarity and Dissimilarity Constraints
  - Learned Mahalanobis distance
  - Randomized locality-sensitive hash function.

Efficient Near-Duplicate Detection and Sub-Image Retrieval

- Part-Based Representation of Images
- Locality-Sensitive Hashing(LSH)
- Layout of the Data on the Hard-Disk



http://www.cs.cmu.edu/~yke/retrieval/mm2004-retrieval.pdf

### Photographer: Lieutenant Ivor

29th Infantry Battalion advancing over No Man's Land during the Battle of Vimy Ridge, 1917



http://www.collectionscanada.gc.ca/forgery/002035-200-e.html#a

Castle

### Original Film



http://www.collectionscanada.gc.ca/forgery/002035-200-e.html#a

### **Extracted Key Features**



(a) Original image



(b) Rotated, scaled, and sheared

http://www.cs.cmu.edu/~yke/retrieval/mm2004-retrieval.pdf

### Automatically Generated Near-Duplicates



Figure 5: Examples of automatically-generated near-duplicates. Only 7 out of 50 transforms are shown; all were correctly identified.

#### http://www.cs.cmu.edu/~yke/retrieval/mm2004-retrieval.pdf

50,000 images 1000 keypoing/image == 50M keypoints

LSH build  $\ell$  independent Hashtables

Each hash table: 1M keypoints

#### **Index Construction**

- 1. For each image in the gallery:
- 2. Find keypoints using DoG detector
- 3. Build PCA-SIFT local descriptors for each keypoint
- 4. Build and store file name table (FT)
- 5. Build and store keypoint table (KT)
- 6. For each of the *l* hash tables (HTs):
- For each keypoint:
  - Hash keypoint and store id in table (in memory)
- 9. Store hash table (HT) on disk

#### **Database Query**

8.

- 1. Find keypoints in query image using DoG detector
- 2. For each keypoint:
- 3. Build its PCA-SIFT local descriptor
- 4. Compute the *l* LSH hashes for the descriptor
- 5. Sort hashes by bucket id, scan hash tables (HTs)
- 6. Sort returned keypoint ids and scan KT linearly
- 7. For each returned image:
- 8. Determine best affine transform using RANSAC
- 9. Discard if a valid transform was not found
- 10. Print matched file names by reading FT

| File Name  |    | Byte 1 | Byte 2   |   | <br>Byte 256 |
|------------|----|--------|----------|---|--------------|
| Table (FT) | ID | Len    | File nam | e |              |
|            | 1  | ххх    | File 1   |   |              |
|            | 2  | ххх    | File 2   |   |              |
|            |    |        |          |   |              |

| Keypoint<br>Table (KT) |    | Bytes<br>1-4 | Bytes<br>5-8 | Bytes<br>9-12 | Bytes<br>13-16 | Bytes<br>17-20 | Bytes<br>21-92 |
|------------------------|----|--------------|--------------|---------------|----------------|----------------|----------------|
|                        | ID | File ID      | х            | Υ             | Size           | Orien.         | Local Descr.   |
|                        | 1  | aaa          |              |               |                |                |                |
|                        | 2  | bbb          |              |               |                |                |                |
|                        |    |              |              |               |                |                |                |

| Layout of <i>one</i> |              | Bytes<br>1-4 | Bytes<br>5-8 | Bytes<br>9-12 | Bytes<br>13-16 |      |
|----------------------|--------------|--------------|--------------|---------------|----------------|------|
|                      |              | Keypoin      | 1            | Keypoir       | 10.2           |      |
|                      | Bucket<br>ID | Key<br>ID    | Hash<br>Val  | Key<br>ID     | Hash<br>Val    |      |
|                      | 1            |              |              |               |                |      |
|                      | 2            |              |              |               |                |      |
|                      |              |              |              |               |                | <br> |

Figure 3: Format of the disk-based data structures.

http://www.cs.cmu.edu/~yke/retrieval/mm2004-retrieval.pdf

### **Evaluation Metrics**

$$recall = \frac{\text{number of correct-positives}}{\text{total number of positives}}$$

and

 $precision = \frac{\text{number of } correct-positives}{\text{total number of matches (correct or false)}}.$ 

### **Retrieval Results**

| T | able | 1: Recall-Precision for   | <u>standard</u>    | transformat          | ions.                                 |
|---|------|---------------------------|--------------------|----------------------|---------------------------------------|
|   |      | recall                    | precision          | L                    |                                       |
|   | Ba   | seline - select 40 rando  | om images          |                      |                                       |
|   |      | 0.3%                      | 0.01%              |                      |                                       |
|   | W    | eighted Sampling Thre     | shold met          | hod from [10         | 5                                     |
|   |      | 90%                       | 67%                |                      |                                       |
|   |      | 100%                      | 6%                 |                      |                                       |
|   | 0    | ur method on art datab    | ase of 12,         | 000 images           |                                       |
|   |      | 99.85%                    | 100%               |                      | <b>147</b> global color, texture      |
|   |      |                           |                    |                      | and shape features                    |
|   |      |                           |                    |                      | <b>132</b> color-based local features |
| _ |      |                           |                    | _                    | Total 279 features                    |
| T | able | e 2: Recall-Precision for | <u>r difficult</u> | <u>transformat</u> i | ons.                                  |
|   |      |                           | recall             | precision            |                                       |
|   |      | Art database of 7,611     | images             |                      |                                       |
|   |      |                           | 98.40%             | 99.86%               |                                       |
|   |      | MM270K database o         | f 18,722 in        | nages                |                                       |
|   |      | Original                  | 96.78%             | 88.78%               |                                       |
|   |      | Same scene removed        | 96.78%             | 96.12%               |                                       |

http://www.cs.cmu.edu/~yke/retrieval/mm2004-retrieval.pdf

### **Recall Precision and RunTime**

Table 3: Recall-Precision for composite images.

| recall | precision |
|--------|-----------|
| 98.85% | 99.65%    |

Table 4: Efficiency of LSH versus linear search.

|                                   | linear search | LSH         |
|-----------------------------------|---------------|-------------|
| Running time in sec. ( $\sigma$ ) | 80.3 (0.06)   | 0.97 (0.04) |
| Pairs of keys checked             | 268 million   | 2656        |
| Pairs of keys matched             | 5464          | 1611        |

### L1 in LSH L2 in PCA-SIFT

#### Table 5: Inefficiency due to L1 assumption.

|                                         | No. of keys |
|-----------------------------------------|-------------|
| Checked by LSH                          | 2656        |
| Matched under L1 ( $d \leq 18000$ )     | 1674        |
| Matched under L2 ( $d \leq 3000$ )      | 1611        |
| Checked because of hash table collision | 982         |
| Matched under L1 but not L2             | 63          |

#### Table 6: Importance of building hash table in memory.

|                                 | Running time in sec. ( $\sigma$ ) |
|---------------------------------|-----------------------------------|
| Build directly on disk          | 325 (1.8)                         |
| Build in memory, stream to disk | 48 (0.1)                          |

### **Comments and Discussions**

- Proved the local features could be used more effective and robust in image matching.
- Scalability?
- Efficiency?
- Pointed out the implementation details.

### Repeatable Discriminative Features

- Scalable Recognition with a Vocabulary Tree (CVPR 2006)
- Find out the most efficient way to represent the images.
- Reuse as much as possible.
- Simply saying: Restructure it well.
  Coding Theory.













### Visual Words Cluster Naturally



### **Hierarchically Clustering**



www.cs.ualberta.ca/~vis/vision06/slides/birs2006-nister-index.pdf

### Visualized as a Tree







### Item Added



www.cs.ualberta.ca/~vis/vision06/slides/birs2006-nister-index.pdf

### Item Added



www.cs.ualberta.ca/~vis/vision06/slides/birs2006-nister-index.pdf

### Item Queried





#### Ground Truth Database 6376 images In groups of four





www.cs.ualberta.ca/~vis/vision06/slides/birs2006-nister-index.pdf

|   | Me | En  | No | S%  | Voc-Tree  | Le | Eb | Perf |   |
|---|----|-----|----|-----|-----------|----|----|------|---|
|   | Α  | y/y | L1 | 0   | 6x10=1M   | 1  | ir | 90.6 |   |
|   | В  | y/y | L1 | 0   | 6x10=1M   | 1  | vr | 90.6 |   |
|   | С  | y/y | L1 | 0   | 6x10=1M   | 2  | ir | 90.4 |   |
| - | D  | n/y | L1 | 0   | 6x10=1M   | 2  | ir | 90.4 | - |
|   | Е  | y/n | L1 | 0   | 6x10=1M   | 2  | ir | 90.4 |   |
|   | F  | n/n | L1 | 0   | 6x10=1M   | 2  | ir | 90.4 |   |
|   | G  | n/n | L1 | 0   | 6x10=1M   | 1  | ir | 90.2 |   |
|   | Н  | y/y | L1 | m2  | 6x10=1M   | 1  | ir | 90.0 |   |
|   | Ι  | y/y | L1 | 0   | 6x10=1M   | 3  | ir | 89.9 |   |
|   | J  | y/y | L1 | 0   | 6x10=1M   | 4  | ir | 89.9 |   |
|   | Κ  | y/y | L1 | 0   | 6x10=1M   | 2  | vr | 89.8 |   |
|   | L  | y/y | L1 | 0   | 6x10=1M   | 2  | ip | 89.0 |   |
|   | М  | y/y | L1 | m5  | 6x10=1M   | 1  | ir | 89.1 |   |
|   | Ν  | y/y | L2 | 0   | 6x10=1M   | 1  | ir | 87.9 |   |
|   | 0  | y/y | L2 | 0   | 6x10=1M   | 2  | ir | 86.6 |   |
|   | Р  | y/y | L1 | 110 | 6x10=1M   | 2  | ir | 86.5 |   |
|   | Q  | y/y | L1 | 0   | 1x10K=10K | 1  | -  | 86.0 |   |
|   | R  | y/y | L1 | 0   | 4x10=10K  | 2  | ir | 81.3 |   |
|   | S  | y/y | L1 | 0   | 4x10=10K  | 1  | ir | 80.9 |   |
|   | Т  | y/y | L2 | 0   | 1x10K=10K | 1  | -  | 76.0 |   |
|   | U  | y/y | L2 | 0   | 4x10=10K  | 1  | ir | 74.4 |   |
|   | V  | y/y | L2 | 0   | 4x10=10K  | 2  | ir | 72.5 |   |
|   | W  | n/n | L2 | 0   | 1x10K=10K | 1  | -  | 70.1 |   |

#### VideoGoogle

### **Database Size Performance**







**Given 1M leave nodes** 



#### ImageSearch at the VizCentre

Browse...

Send File



Top n results of your query.



bourne/im1000043322.pgm bourne/im1000043323.pgm bourne/im1000043326.pgm bourne/im1000043327.pgm

#### ImageSearch at the VizCentre

New query: File is 367x203 Browse... Send File



Top n results of your query.



bourne/im1000034498.pgm bourne/im1000051118.pgm bourne/im1000062573.pgm bourne/im1000051094.pgm

### **Comments and Discussion**

- Is it easy to dynamically change the tree structure?
- Is the metric system effective/accurate enough?
  - Good for rigid objects.
  - Bad for faces, animals...
- Can the metric be learned from the specific data base?

Fast Image Search for Learned Metrics

- Fast and Accurate
- Fast: Generic or Low-Dimension metric
  - Not accurate for many cases
- Accurate: *Learned* Metrics. Specific for some certain tasks.
  - No guarantee to be fast. Could be deteriorated to linear search.

### **Related work**

Metric learning for image distances

- Weinberger et al. 2004, Hertz et al. 2004, Frome et al. 2007, Varma & Ray 2007
- Embedding functions to reduce cost of expensive distances
  - Athitsos et al. 2004, Grauman & Darrell 2005, Torralba et al. 2008
- Search structures based on spatial partitioning and recursive decompositions
  - Beis & Lowe 1997, Obdrzalek & Matas 2005, Nister & Stewenius 2006, Uhlmann 1991

- Locality-sensitive hashing (LSH) for vision applications
  - Shakhnarovich et al. 2003,
    Frome et al. 2004, Grauman
    & Darrell 2004
- Data-dependent variants of LSH
  - Shakhnarovich et al. 2003, Georgescu et al. 2003

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Metric learning



There are various ways to judge appearance/shape similarity...

but often we know more about (some) data than just their appearance.

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Metric learning



- Exploit partially labeled data and/or (dis)similarity constraints to construct more useful distance function
- Various existing techniques

### Example sources of similarity constraints



Partially labeled image databases







Fully labeled image databases



#### User feedback



Detected video shots, tracked objects



Problem-specific knowledge

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

Problem: How to guarantee fast search for a learned metric?

Exact search methods break down in high-d spaces, rely on good partitioning heuristics, and can degenerate to linear scan in worst case.

Approximate search techniques are defined only for particular "generic" metrics, e.g. Hamming distance, L<sub>p</sub> norms, inner product.

### Mahalanobis distances

- Distance parameterized by p.d.  $d \times d$  matrix A:  $d_A(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\boldsymbol{x}_i - \boldsymbol{x}_j)^T A(\boldsymbol{x}_i - \boldsymbol{x}_j)$
- Similarity measure is associated generalized inner product (kernel)

$$s_A(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^T A \boldsymbol{x}_j.$$

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Information-theoretic (LogDet) metric learning

#### Formulation:

$$\begin{array}{ll} \min_{\mathcal{A}} & D_{\ell d}(\mathcal{A}, \mathcal{A}_{0}) \\ \text{s.t.} & (\mathbf{x}_{i} - \mathbf{x}_{j})^{T} \mathcal{A}(\mathbf{x}_{i} - \mathbf{x}_{j}) \leq u \quad \text{if } (i, j) \in \mathcal{S} \text{ [similarity constraints]} \\ & (\mathbf{x}_{i} - \mathbf{x}_{j})^{T} \mathcal{A}(\mathbf{x}_{i} - \mathbf{x}_{j}) \geq \ell \quad \text{if } (i, j) \in \mathcal{D} \text{ [dissimilarity constraints]} \end{array}$$

$$D_{\ell d}(A, A_0) = \operatorname{tr}(AA_0^{-1}) - \log \det(AA_0^{-1}) - d,$$

- Advantages:
  - -Simple, efficient algorithm
  - -Can be applied in kernel space

[Davis, Kulis, Jain, Sra, and Dhillon, ICML 2007] http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Locality Sensitive Hashing (LSH)



[Indyk and Motwani 1998, Charikar 2002]

http://www.co.utovoc.odu/waroumon/clidoc/join\_ot\_ol\_ovor3000.nnt

### LSH functions for dot products

The probability that a *random hyperplane* separates two unit vectors depends on the angle between them:

$$\Pr[\operatorname{sign}(\boldsymbol{x}_i^T \boldsymbol{r}) = \operatorname{sign}(\boldsymbol{x}_j^T \boldsymbol{r})] = 1 - \frac{1}{\pi} \cos^{-1}(\boldsymbol{x}_i^T \boldsymbol{x}_j)$$



Corresponding hash function:

$$h_{\boldsymbol{r}}(\boldsymbol{x}) = \begin{cases} 1, & \text{if } \boldsymbol{r}^T \boldsymbol{x} \ge 0\\ 0, & \text{otherwise} \end{cases}$$

http://www.cs.utexas.edu/~grauman/slides/ji \_et\_al\_cvpr2008.ppt

[Goemans and Williamson 1995, Charikar 2004]

### LSH functions for learned metrics





It should be unlikely that a hash function will split examples like those having similarity constraints... ...but likely that it splits those having dissimilarity constraints.

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### LSH functions for learned metrics

- Given learned metric with  $A = G^T G$
- We generate parameterized hash functions for  $s_A(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^T A \boldsymbol{x}_j$  :

$$h_{\boldsymbol{r},A}(\boldsymbol{x}) = \begin{cases} 1, & \text{if } \boldsymbol{r}^T G \boldsymbol{x} \ge 0\\ 0, & \text{otherwise} \end{cases}$$

This satisfies the locality-sensitivity condition:

$$\Pr\left[h_{\boldsymbol{r},A}(\boldsymbol{x}_{i}) = h_{\boldsymbol{r},A}(\boldsymbol{x}_{j})\right] = 1 - \frac{1}{\pi}\cos^{-1}\left(\frac{\boldsymbol{x}_{i}^{T}A\boldsymbol{x}_{j}}{\sqrt{|G\boldsymbol{x}_{i}||G\boldsymbol{x}_{j}|}}\right)$$

### Implicit hashing formulation

- Image data often high-dimensional—must work in kernel space
- High-d inputs are sparse, but  $A = G^T G$  may be dense  $\longrightarrow$  can't work with  $r^T G x$ .
- We derive an implicit update rule that simultaneously updates metric and hash function parameters.
- Integrates metric learning and hashing

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Implicit hashing formulation

We show that the same hash function can be computed indirectly via:

$$G = I + XSX^T$$

Possible due to property of information-theoretic metric learning

S is c x c matrix of coefficients that determine how much weight each pair of the *c* constrained inputs contributes to learned parameters.

### Recap: data flow

- 1. Receive constraints and base metric.
- 2. Learning stage: simultaneously update metric and hash functions.
- 3. Hash database examples into table.
- 4. When a query arrives, hash into existing table for approximate neighbors under learned metric.

### **Object Categorization**

Caltech 101, O(106) dimensions, 4k points

### **Pose Estimation**

Poser data, 24k dimensions, .5 million points

### Patch Indexing

Photo Tourism data, 4096 dimensions, 300k points http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt









#### Caltech-101



### **Results: object categorization**



#### Caltech-101 database

ML = metric learning

### **Results: object categorization**



- Query time controlled by required accuracy
- e.g., search less than 2% of database examples for accuracy close to linear scan

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_a

### **Results: object categorization**



 Query time controlled by required accuracy

 e.g., search less than 2% of database examples for accuracy close to linear scan

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

# Results: pose estimation

- 500,000 synthetic images
- Measure mean error per joint between query and NN
  - Random 2 database images: 34.5 cm between each joint
- Average query time:
  - ML linear scan: 433.25 sec
  - ML hashing: 1.39 sec

| $L_2$ linear scan24K8.9 $L_2$ hashing24K9.4PSH, linear scan1.5K9.4PCA, linear scan6013.5ML PCA, lin. scan6013.1 | Method            | d    | Error (cm) |
|-----------------------------------------------------------------------------------------------------------------|-------------------|------|------------|
| $L_2$ hashing24K9.4PSH, linear scan1.5K9.4PCA, linear scan6013.5ML PCA, lin. scan6013.1                         | $L_2$ linear scan | 24K  | 8.9        |
| PSH, linear scan1.5K9.4PCA, linear scan6013.5ML PCA, lin. scan6013.1                                            | $L_2$ hashing     | 24K  | 9.4        |
| PCA, linear scan6013.5ML PCA, lin. scan6013.1                                                                   | PSH, linear scan  | 1.5K | 9.4        |
| ML PCA, lin. scan 60 13.1                                                                                       | PCA, linear scan  | 60   | 13.5       |
|                                                                                                                 | ML PCA, lin. scan | 60   | 13.1       |
| ML linear scan 24K 8.4                                                                                          | ML linear scan    | 24K  | 8.4        |
| ML hashing 24K 8.8                                                                                              | ML hashing        | 24K  | 8.8        |

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Results: patch indexing



#### O(10<sup>5</sup>) patches

- Photo Tourism data: goal is to match patches that correspond to same point on 3d object
- More accurate matches → better reconstruction
- Huge search pool

[Photo Tourism data provided by Snavely, Seitz, Szeliski, Winder & Brown] http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### **Results: patch indexing**



http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### Summary

- Content-based queries demand fast search algorithms for useful image metrics.
- Contributions:
  - Semi-supervised hash functions for class of learned metrics and kernels
  - Theoretical guarantees of accuracy on nearest neighbor searches
  - Validation with pose estimation, object categorization, and patch indexing tasks.

http://www.cs.utexas.edu/~grauman/slides/jain\_et\_al\_cvpr2008.ppt

### **Comments and Discussion**

- Scalable to multi-millions images?
- Flexible to expand to cove more constraints?
- Hybrid system:
  - Hierarchy vocabulary tree
  - Learned metric with LSH

### Conclusions

- The technologies have been into the practically usable.
- Implementation details could differentiate further.
- Find out the appealing daily life applications. \$\$\$\$\$ ☺
- Machines how to evolve?
  - Teach them to ask the key questions
  - Process on the key questions.