Experiments with
Object Detection using Haar-like
Features

Harshdeep Singh
Jan 29, 2009

Outline

Background

A walkthrough of cascade creation
Visualizing a couple of cascades
Detecting different types of objects
Training with a single image

Incorporating color information to improve
performance (for face detection)

The Detector

* Proposed by [Viola, Jones 2001]
e Using boosted cascades of Haar-like features

 Implementation available in OpenCV

Haar-like features

0,

feature = w; x RecSum(r,) + w, x RecSum(r,)
Weights can be positive or negative
Weights are directly proportional to the area
Calculated at every point and scale

Weak Classifier

e A weak classifier (h(x, f, p, 8)) consists of
— feature (f)

— threshold (9)
— polarity (p), such that

_ (1 if pf(x) = p@
hix,f, 0, @) {{1 otherwise

* Requirement

— Should perform better than random chance

Attentional Cascade

Al Sub—windows

L)
’ R T i R T i A T - |':I'.."l'-lf'.':;\"'E'|F

Feject Sub—window

BProcessing

e Initial stages have less features (faster computation)
 More time spent on evaluating more promising sub-windows

Cascade Creation - Walkthrough

Positive Samples

200 distorted versions of a synthetic image

Cascade Creation - Walkthrough

Positive Samples

200 distorted versions of a synthetic image

Cascade Creation - Walkthrough

Negative Samples
100 images from BACKGROUND Google category of Caltech 101 dataset

AUSBAND
THE THINGS | SEE

Cascade Creation - Walkthrough

* |nput Parameters
— d = Minimum acceptable detection rate per layer (0.995)

— f = Maximum acceptable false positive rate per layer (0.5)

— Fiarger = Target overall false positive rate

* Or maximum number of stages in the cascade

e FornStages=14,F = fnStages= 6,1 e-5

target

Cascade Creation - Walkthrough

Fo=1
i=0

while F, > F,, .., and i < nStages

targe
i=i+1l
Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

F =1 F, = False alarm rate of the cascade with i stages
0=

i=0
while F; > F, ... and i < nStages
i=i+1l
Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

Fo=1 F, = False alarm rate of the cascade with i stages
i=0
while F, > F,_ ... and i < nStages
i=i+1l
Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

E =1 Weight for each
0~ oy
=0 positive sample 0.5/m
'= negative sample 0.5/n
while F; > F, ... and i < nStages

i=i+1l m — number of positive samples (200)

Train Classifier for stage i n —number of negative samples (100)

Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

E =1 Weight for each
0~ oy
=0 positive sample 0.5/m
'= negative sample 0.5/n
while F; > F, ... and i < nStages

i=i+1l m — number of positive samples (200)

Train Classifier for stage i n —number of negative samples (100)

Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

Fo=1 The one with minimum error

i=0

while F;>F,, .

.and i < nStages € = miﬂf,p,& wa \h(xe, fr0,8) = ¥4
i=i+1 L
Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f € = 0,005
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Error minimization

~eeccccce

Positive samples Negative samples

Error minimization

Error minimization

e, =S"+(T-9)

Sum of weights of
e,=S+(T"-S%)

T*: All +ve examples
T: All -ve examples
S+: +ve examples below the current one e =min(e,, e))

S-: -ve examples below the current one

Cascade Creation - Walkthrough

Fo=1
i=0

while F; > F, ... and i < nStages

i=i+1l

Train Classifier for stage i

Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

_ -
Wer,r = Wey B,

e, =0, if example x; is classified correctly
e, =1, otherwise
fe= 1=
E -
1 - Et

eo@eoe o

Cascade Creation - Walkthrough

Fo=1 f, = number of negative samples that were
i=0 detected by this stage/ total number of
while F; > F, ... and i < nStages negative samples

i=i+1 = 1/100

Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

i=0
while F; > F

How far will you go to get down to f?

rarget aNd i < nStages
i=i+1l
Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

= 1
FO 01 C(x) = {1 Tiag ache(x) 2 52%';1 Qe
= _ 0 otherwise
while F; > F, ... and i < nStages
i=i+l 1 c
Train Classifier for stage i G = log— B = :

Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

F =1 Add another stage?
0=

i=0

while F, > F_ .., and i < nStages

targe
i=i+1l
Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Firer N = Set of negative samples that
are labeled positive by current detector

Cascade Creation - Walkthrough

Fo=1 Trim the negative samples
i=0
while F; > F, ... and i < nStages
i=i+1l
Train Classifier for stage i
Initialize Weights
Normalize Weights
Pick the (next) best weak classifier
Update Weights
Evaluate f,
if f.>f
go back to Normalize Weights

Combine weak classifiers to form the strong
stage classifier

Evaluate F;

If F; > Fypery N = set of negative samples that
are labeled positive by current detector

Resulting Cascade

—- z =2
o
-

If Fiarger (Maximum false alarm rate) is increased from 0.05 t0 0.2, a
cascade with only the first two stages is created

Resulting Cascade

—- z =2
o
-

If Fiarger (Maximum false alarm rate) is increased from 0.05 t0 0.2, a
cascade with only the first two stages is created

Which features actually get selected?

(OpenCV’s default frontal face cascade)

Stage 1 S
N 10

Stage O

more

Stage 21
206

more

Caltech 101 dataset

101 categories
* 40 to 800 images per category
e Each image is roughly 300x200 pixels

Inlmamn ~ anm s AR 1 masaf AT

Regularity in Images

“Most images have little or no clutter. The objects tend to be centered in each image.
Most objects are presented in a stereotypical pose.”

Detecting different types of objects

. Train a cascade from:

2. Test on the rest of the images from Faces_easy and Background Google categories
3. Repeat with another category

0.9

0.8

0.7

0.6

0.5

Precision

0.4

Detecting different types of objects

0.4 0.5 0.6 0.7 0.8 0.9

Recall

Variation in Training Images

High accuracy categories

Training with a Single Image

Generate 1000 random distortions of a
representative image

Hand label ROl in 40/64 images

ZEEEe
10 _} e §

Negative samples taken from BACKGROUND _Google category of Caltech 101

Some features that get selected
TOQD®
Gropflsripistorls 07

Hand label ROI

Performance

Precision

Hand label ROI

0.3
0.25
0.2
0.15
0.1
0.05
0

N4
7 3

Random distortion

—

0.2 0.4 0.6 0.8

Recall

Random distortions

Skin Color Approximation

e To filter results of face detector
e Derived from [Bradsky 1998]

e Template Image

— Patches of faces of different subjects under varying lighting
conditions

Skin Color Approximation

A

N &
e ™~

S = Sum of pixel values in t}e back-projection / Area

Precision

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

Result

With skin color filter

/

g

*<

Without skin

e<— colorfilter

0.2

0.4 0.6 0.8 1

Recall

Evaluated on 435 face images in the Caltech 101 dataset

When does it help?

Without skin filter With skin filter

Lessons

Viola Jones’ technique worked pretty well for faces and some other categories
like airplanes and car_sides.

Did not work well with some categories. Accuracy depends largely on the
amount of variation in training and test images. It also depends on the amount
of background clutter in the training images.

In some cases, the training algorithm is not able to go below the maximum false
alarm rate of a layer, even with a very large number of features.

Selected features for the first few stages are more “intuitive” than the later ones.

Skin color can be used to increase the precision of face detection at the cost of
recall. Dependent on illumination.

Training classifiers is slow! Let OpenCV use as much memory as you have.

