

Sliding window detection

January 29, 2009

Kristen Grauman UT-Austin

Schedule

- http://www.cs.utexas.edu/~grauman/cours es/spring2009/schedule.htm
- http://www.cs.utexas.edu/~grauman/cours es/spring2009/papers.htm

Plan for today

- Lecture
 - Sliding window detection
 - Contrast-based representations
 - Face and pedestrian detection via sliding window classification
- Papers: HoG and Viola-Jones
- Demo
 - Viola-Jones detection algorithm

Tasks

- Detection: Find an object (or instance of object category) in the image.
- Recognition: Name the particular object (or category) for a given image/subimage.
- How is the object (class) going to be modeled or learned?
- Given a new image, how to make a decision?

Earlier: Knowledge-rich models for objects

Irving Biederman, Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review, 1987.

Earlier: Knowledge-rich models for objects

Alan L. Yuille, David S. Cohen, Peter W. Hallinan. Feature extraction from faces using deformable templates, 1989.

Later: Statistical models of appearance

- Objects as appearance patches
 - E.g., a list of pixel intensities
- · Learning patterns directly from image features

Eigenfaces (Turk & Pentland, 1991)

Later: Statistical models of appearance

- Objects as appearance patches
 - E.g., a list of pixel intensities
- · Learning patterns directly from image features

Eigenfaces (Turk & Pentland, 1991)

For what kinds of recognition tasks is a holistic description of appearance suitable?

Appearance-based descriptions

 Appropriate for classes with more rigid structure, and when good training examples available

Appearance-based descriptions

Scene recognition based on global texture pattern. [Oliva & Torralba (2001)]

What if the object of interest may be embedded in "clutter"?

Sliding window object detection

Sliding window object detection

If object may be in a cluttered scene, slide a window around looking for it.

Detection via classification

- Consider all subwindows in an image
 - Sample at multiple scales and positions
- Make a decision per window:
 - "Does this contain object category X or not?"

Detector evaluation

How to evaluate a detector?

When do we have a **correct** detection?

Is this correct?

Area intersection Area union > 0.5

Slide credit: Antonio Torralba

Detector evaluation

How to evaluate a detector?

Summarize results with an **ROC curve**:

show how the number of correctly classified positive examples varies relative to the number of incorrectly classified negative examples.

Image: gim.unmc.edu/dxtests/ROC3.htm

Eigenfaces: global appearance description

An early appearance-based approach to face recognition

Generate lowdimensional representation of appearance with a linear subspace.

Project new images to "face space".

Recognition via nearest neighbors in face space

Turk & Pentland, 1991

Feature extraction: global appearance

• Pixel-based representations sensitive to small shifts

 Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation

Cartoon example: an albino koala

Gradient-based representations

Consider edges, contours, and (oriented) intensity gradients

Gradient-based representations

Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination

Gradient-based representations: Histograms of oriented gradients Orientation Voting Overlapping Blocks Input Image Gradient Image Local Normalization Wap each grid cell in the input window to a histogram counting the gradients per orientation.

Dalal & Triggs, CVPR 2005

Discriminative vs. generative models

Generative:

- + possibly interpretable
- + can draw samples
- > models variability unimportant to classification task
- > often hard to build good model with few parameters

Discriminative:

- > + appealing when infeasible to model data itself
- + excel in practice
- > often can't provide uncertainty in predictions
- > non-interpretable

K. Grauman, B. Leibe

31

Discriminative methods Neural networks Nearest neighbor LeCun, Bottou, Bengio, Haffner 1998 Shakhnarovich, Viola, Darrell 2003 Rowley, Baluja, Kanade 1998 Berg, Berg, Malik 2005... Visual Object Recognition Tutorial Conditional Random Fields **Support Vector Machines Boosting** Guyon, Vapnik Viola, Jones 2001, McCallum, Freitag, Pereira Heisele, Serre, Poggio, Torralba et al. 2004, 2000; Kumar, Hebert 2003 2001,... Opelt et al. 2006,... K. Grauman, B. Leibe Slide adapted from Antonio Torralba

/isual Object Recognition Tutoria

Boosting

- Build a strong classifier by combining number of "weak classifiers", which need only be better than chance
- Sequential learning process: at each iteration, add a weak classifier
- Flexible to choice of weak learner
 - > including fast simple classifiers that alone may be inaccurate
- We'll look at Freund & Schapire's AdaBoost algorithm
 - > Easy to implement
 - Base learning algorithm for Viola-Jones face detector

K. Grauman, B. Leibe

33

AdaBoost: Intuition

Consider a 2-d feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Figure adapted from Freund and Schapire

K. Grauman, B. Leibe

34

- Given example images (x₁, y₁),..., (x_n, y_n) where y_i = 0,1 for negative and positive examples respectively.
- Initialize weights w_{1,i} = \frac{1}{2m}, \frac{1}{2l} \text{ for } y_i = 0, 1 \text{ respectively, where } m \text{ and } l \text{ are the number of negatives and positives respectively.}
- For t = 1,..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{i=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-\epsilon_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_i = \frac{e_i}{\epsilon}$.

The final strong classifier is:

$$h(x) = \left\{ \begin{array}{ll} 1 & \sum_{t=1}^T \alpha_t h_t(x) \geq \frac{1}{2} \sum_{t=1}^T \alpha_t \\ 0 & \text{otherwise} \end{array} \right.$$

where $\alpha_t = \log \frac{1}{\beta_t}$

AdaBoost Algorithm

Start with uniform weights on training examples

For T rounds

Evaluate *weighted* error for each feature, pick best.

Re-weight the examples:

 incorrectly classified ⇒ more weight Correctly classified ⇒ less weight

Final classifier is combination of the weak ones, weighted according to the error they had.

[Freund & Schapire 1995]

Example: Face detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

K. Grauman, B. Leibe

38

AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - > Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004. (first version appeared at CVPR 2001)

AdaBoost for feature+classifier selection

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.

faces and non-faces.

Resulting weak classifier:

For next round, reweight the examples according to errors, choose another filter/threshold combo.

Viola & Jones, CVPR 2001

K. Grauman, B. Leibe

ual Object Recognition Tutoria

Cascading classifiers for detection

For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,

- > Filter for promising regions with an initial inexpensive classifier
- Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

Fleuret & Geman, IJCV 2001 Rowley et al., PAMI 1998 Viola & Jones, CVPR 2001

K. Grauman, B. Leibe

Figure from Viola & Jones CVPR 2001

Cascading classifiers for detection

 Given a nested set of classifier hypothesis classes

Slide credit: Paul Viola

Viola 2003

Cascading classifiers for detection

- A 1 feature classifier achieves 100% detection rate and about 50% false positive rate.
- A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative)
 - using data from previous stage.
- A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

Slide credit: Paul Viola Viola 200

Viola-Jones Face Detector: Summary Train cascade of classifiers with

Faces
Non-faces

Train with 5K positives, 350M negatives

- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

K. Grauman, B. Leibe

46

Detecting profile faces requires training separate detector with profile examples.

K. Grauman, B. Leibe

Viola-Jones Face Detector: Results

Postprocess: suppress non-maxima

K. Grauman, B. Leibe

Visual Object Recognition Tutorial

Visual Object Recognition Tutorial

Example application

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A. "Hello! My name is... Buffy" - Automatic naming of characters in TV video, BMVC 2006.

http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

K. Grauman, B. Leibe

53

Fast face detection: Viola & Jones

Key points:

- Huge library of features
- Integral image efficiently computed
- · AdaBoost to find best combo of features
- Cascade architecture for fast detection

Support vector machines

· Want line that maximizes the margin.

- \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$
- For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$
- Distance between point and line: $\frac{\|\mathbf{x}_i \cdot \mathbf{w} + b\|}{\|\mathbf{w}\|}$

For support vectors:

$$\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \qquad M = \left| \frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|} \right| = \frac{2}{\|\mathbf{w}\|}$$

Support vector machines

• Want line that maximizes the margin.

- \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$
- $\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$
- For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$
- Distance between point and line: $\frac{|\mathbf{x}_i \cdot \mathbf{w} + b|}{\|\mathbf{w}\|}$

Therefore, the margin is $\ 2 \ / \ ||\mathbf{w}||$

Finding the maximum margin line

- 1. Maximize margin $2/||\mathbf{w}||$
- 2. Correctly classify all training data points:

 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

 \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

Quadratic optimization problem:

Minimize $\frac{1}{2}\mathbf{w}^T\mathbf{w}$

Subject to $y_i(\mathbf{w}\cdot\mathbf{x}_i+b) \ge 1$

E. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

Finding the maximum margin line

• Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$

learned weight

Support vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

Finding the maximum margin line

- Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ $b = y_{i} \mathbf{w} \cdot \mathbf{x}_{i} \quad \text{(for any support vector)}$ $\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$
- Classification function:

$$f(x) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

$$= \operatorname{sign}\left(\sum_{i} \alpha_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b\right)$$
If $f(x) < 0$, classify as negative, if $f(x) > 0$, classify as positive

- Notice that it relies on an inner product between the test point x and the support vectors x;
- (Solving the optimization problem also involves computing the inner products x_i · x_j between all pairs of training points)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:
- But what are we going to do if the dataset is just too hard?
 - How about... mapping data to a higher-dimensional

Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

Non-linear SVMs: Feature spaces

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

 This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

Examples of General Purpose Kernel Functions

- Linear: K(x_i,x_j)= x_i Tx_j
- Polynomial of power p: $K(\mathbf{x_i}, \mathbf{x_j}) = (1 + \mathbf{x_i}^T \mathbf{x_j})^p$
- Gaussian (radial-basis function network):

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

More on specialized image kernels -- next class.

Slide from Andrew Moore's tutorial: http://www.autonlab.org/tutorials/svm.html

SVMs for recognition

- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- 4. Given this "kernel matrix" to SVM optimization software to identify support vectors & weights.
- 5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

Pedestrian detection

 Detecting upright, walking humans also possible using sliding window's appearance/texture; e.g.,

SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]

SVM with HoGs [Dalal & Triggs, CVPR 2005]

Pedestrian detection

 Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Moving pedestrians

What about video? Is pedestrian motion a useful feature?

Detecting Pedestrians Using Patterns of Motion and Appearance, P. Viola, M. Jones, and D. Snow, ICCV 2003.

- Use motion and appearance to detect pedestrians
- Generalize rectangle features for sequence data
- Training examples = pairs of images.

Global appearance, windowed detectors: The good things

- > Some classes well-captured by 2d appearance pattern
- > Simple detection protocol to implement
- Good feature choices critical
- Past successes for certain classes

Visual Object Recognition Tu

K. Grauman, B. Leibe

75

Limitations

- · High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - > With so many windows, false positive rate better be low
 - > If training binary detectors independently, means cost increases linearly with number of classes

'isual Object Recognition Tutoria

K. Grauman, B. Leibe

76

Limitations (continued)

Not all objects are "box" shaped

K. Grauman, B. Leibe

7

Limitations (continued)

- Non-rigid, deformable objects not captured well with representations assuming a fixed 2d structure; or must assume fixed viewpoint
- Objects with less-regular textures not captured well with holistic appearance-based descriptions

K. Grauman, B. Leibe

78

Visual Object Recognition Tutorial

Limitations (continued)

· If considering windows in isolation, context is lost

Sliding window

Detector's view

Figure credit: Derek Hoiem

K. Grauman, B. Leibe

70

Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

80

Image credit: Adam, Rivlin, & Shimshoni

K. Grauman, B. Leibe

Tools: LibSVM

- http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- C++, Java
- Matlab interface

