
CS 376 Computer Vision
Spring 2011

Problem set 1
Out: Tuesday Feb 1
Due: Monday Feb 14 11:59 PM

See the end of this document for submission instructions.

Visit us during office hours to discuss any questions on the assignment. Or, if sending a question
via email, please submit to cv-spring2011@cs.utexas.edu with CS376 in the subject line.

I. Short answer problems [30 points]

1. Give an example of how one can exploit the associative property of convolution to more
efficiently filter an image.

2. This is the input image: ([0 0 1 1 0 0 1 1]. What is the result of dilation with a structuring
element [1 1 1]?

3. The filter]0,
2
1,0,

2
1,0[−=′f gives an estimate of the first derivative of the image in the x

direction. What is the corresponding second derivative filter f ′′ ? (Hint: asymmetric filters must
be flipped prior to convolution.)

4. Name two specific ways in which one could reduce the amount of fine, detailed edges that are
detected with the Canny edge detector.

5. Describe a possible flaw in the use of additive Gaussian noise to represent image noise.

6. Design a method that takes video data from a camera perched above a conveyor belt at an
automotive equipment manufacturer, and reports any flaws in the assembly of a part. Your
response should be a list of concise, specific steps, and should incorporate several techniques
covered in class thus far. Specify any important assumptions your method makes.

II. Programming problem: content-aware image resizing [70 points]

For this exercise, you will implement a version of the content-aware image resizing technique
described in Shai Avidan and Ariel Shamir’s SIGGRAPH 2007 paper, “Seam Carving for Content-
Aware Image Resizing”. The paper is available off the course website. The goal is to implement
the method, and then examine and explain its performance on different kinds of input images.

First read through the paper, with emphasis on sections 3, 4.1, and 4.3. Note: choosing the next
pixel to add one at a time in a greedy manner will give sub-optimal seams; the dynamic
programming solution ensures the best seam (constrained by 8-connectedness) is computed.
Use the dynamic programming solution as given in the paper and explained in class.

Write Matlab code with functions that can do the following tasks:

• Compute the energy function at each pixel using the magnitude of the x and y gradients
(equation 1 in the paper)

• Compute the optimal vertical seam given an image

• Compute the optimal horizontal seam given an image

• Reduce the image size by a specified amount in one dimension (width or height
decrease)

• Display the selected seam on top of an image

• Functions with the following interface:

 [output] = reduceWidth(im, numPixels)

 [output] = reduceHeight(im, numPixels)

 These functions take an input image im, and a parameter specifying how many seams to
carve, from the width or height, respectively. The image im will be a h x w x 3 uint8
matrix, which is what imread returns for a color image. Put these functions in file
named reduceWidth.m and reduceHeight.m

Set up scripts so that you can play with the seam removal and specify different combinations of
horizontal and vertical removals. Apply your system to the provided images. View the results in
color, but note that the gradients should be computed with the grayscale converted image.

Matlab hints:

• Useful functions: imfilter, im2double, fspecial, imread, imresize, rgb2gray,
imagesc, imshow, subplot;

• To plot points on top of a displayed image, use “imshow(im);” followed by “hold on;”
followed by “plot(…)”.

• Be careful with double and uint8 conversions as you go between computations with
the images and displaying them – filtering should be done with doubles.

Answer each of the following, and include image displays where appropriate:

1. [10 points] Run your reduceHeight function on the provided prague.jpg with
numPixels = 100 (in other words, shrink the height by 100 pixels). Run your
reduceWidth function on the provided mall.jpg with numPixels = 100 (in other
words, shrink the width by 100 pixels). Display the outputs.

2. [10 points] Display (a) the energy function output (total gradient magnitudes e1(I)) for the

provided image prague.jpg, and (b) the two corresponding cumulative minimum
energy maps (M) for the seams in each direction (use the imagesc function). Explain
why these outputs look the way they do given the original image’s content.

3. [10 points] For the same image prague.jpg, display the original image together with (a)

the first selected horizontal seam and (b) the first selected vertical seam. Explain why
these are the optimal seams for this image.

4. [10 points] Make some change to the way the energy function is computed (i.e., filter

used, its parameters, or incorporating some other a prior knowledge). Display the result
and explain the impact on the results for some example.

5. [30 points] Now, for the real results! Use your system with different kinds of images and

seam combinations, and see what kind of interesting results it can produce. The goal is
to form some perceptually pleasing outputs where the resizing better preserves content
than a blind resizing would, as well as some examples where the output looks unrealistic
or has artifacts.

Include results for the two provided images, plus at least three images of your own
choosing. Include an example or two of a “bad” outcome. Be creative in the images you
choose, and in the amount of combined vertical and horizontal carvings you apply. Try to
predict types of images where you might see something interesting happen. It’s ok to
fiddle with the parameters (seam sequence, number of seams, etc) to look for interesting
and explainable outcomes.

For each result, include the following things, clearly labeled (see title function):

(a) the original input image,
(b) your system’s resized image,
(c) the result one would get if instead a simple resampling were used (via
Matlab’s imresize),
(d) the input and output image dimensions,
(e) the sequence of enlargements and removals that were used, and
(f) a qualitative explanation of what we’re seeing in the output.

III. [OPTIONAL] Extra credit [up to 10 points each, max possible 20 points extra credit]

Below are ways to expand on the system you built above. If you choose to do any of these
(or design your own extension) include in your writeup an explanation of the extension as well
as images displaying the results and a short explanation of the outcomes. Also include a line
or two of instructions telling what needs to be done to execute that part of your code.

1. Allow a user to mark an object to be removed, and then remove seams until all pixels on

that object are gone (as suggested in section 4.6 of the paper). Either hard-code the
region specific to the image, or allow interactive choices (Matlab’s ginput or impoly
functions are useful to get mouse clicks or draw polygons).

2. Design an alternate energy function, instead of the gradient magnitude. Explain your

choice, and show how it can influence the results as compared to using the gradient
magnitude. Choose an image or two that illustrates the differences well.

3. To avoid warping regions containing people’s faces, have the system try to detect skin-

colored pixels, and let that affect the energy map. Try using the hue (H) channel of HSV
color space (see Matlab’s ‘rgb2hsv’ function to map to HSV color space). Think about
how to translate those values into energy function scores.

4. Implement functions to increase the width or height of the input image, blending the
neighboring pixels along a seam. (See the Seam Carving paper for details.)
Demonstrate on an image that clearly shows the impact.

5. Implement the greedy solution, and compare the results to the optimal DP solution.

Submission instructions: what to hand in

Electronically:

• Your documented Matlab code (including functions reduceWidth.m and
reduceHeight.m)

• A first pdf file named file1.pdf containing the following:

o Your name at the top

o Your answers to Part I, numbered.

o A brief explanation of your implementation strategy: a short paragraph or two
describing in English what you have computed.

o Your responses and image results for questions 1 through 4 in Part II, numbered.

Insert image figures in the appropriate places for these questions.

• A second pdf file named file2.pdf containing the following:

o Your name at the top

o Your responses and image results for question 5 in Part II.

o (optional): any results and descriptions for extra credit portions.

o This file will be posted online – be sure to credit any photo sources.

Tip: How to save as pdf? If you have a pdf printer installed on your computer, you can convert a
document prepared in Word to pdf. The CS machines have openoffice installed, which will
also allow you to Save as… a pdf file. Or, if you work in Latex, you can use pdflatex, or
compile to a ps and then convert.

Submit all the above with one call to turnin:

>> turnin --submit shalini pset1 file1.pdf file2.pdf
reduceWidth.m reduceHeight.m <otherFunction.m> …
<otherFunction.m> etc.

Hardcopy:

• Also drop a hardcopy in the CS homework dropbox in PAI 5.38. Attach a cover page with
the course number CS376 and your name, to make it easy to find in the dropbox. Please
save paper by concatenating shorter functions into a single page before printing.

Image acknowledgements: Thanks to the following Flickr users for sharing their photos under the
Creative Commons license: mall.jpg is provided by hey tiffany! prague.jpg david.nikonvscanon

