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Visual Pattern Recognition by Moment Invariants” 
MING-KUEI HUt SENIOR MEMBER, IRE 

Summary-In this paper a theory of two-dimensional moment 
invariants for planar geometric figures is presented. A fundamental 
theorem is established to relate such moment invariants to the well- 
known algebraic invariants. Complete systems of moment invariants 
under translation, similitude and orthogonal transformations are 
derived. Some moment invariants under general two-dimensional 
linear transformations are also included. 

Both theoretical formulation and practical models of visual 
pattern recognition based upon these moment invariants are 
discussed. A simple simulation program together with its perform- 
ance are also presented. It is shown that recognition of geometrical 
patterns and alphabetical characters independently of position, size 
and orientation can be accomplished. It is also indicated that 
generalization is possible to include invariance with parallel pro- 
jection. 

I. INTRODUCTION 

I% 

ECOGNITION of visual patterns and characters 
independent of position, size, and orientation in 
the visual field has been a goal of much recent 

research. To achieve maximum utility and flexibility, the 
methods used should be insensitive to variations in shape 
and should provide for improved performance with re- 
peated trials. The method presented in this paper meets 
a.11 these conditions to some degree. 

Of the many ingeneious and interesting methods so 
far devised, only two main categories will be mentioned 
here: 1) The property-list approach, and 2) The statistical 
approach, including both the decision theory and random 
net approaches.’ The property-list method works very 
well when the list is designed for a particular set of pat- 
terns. In theory, it is truly position, size, and orientation 
independent, and may also allow for other variations. 
Its severe limitation is that it becomes quite useless, if 
a different set of patterns is presented to it. There is no 
known method which can generate automatically a new 
property-list. On the other hand, the statistical approach 
is capable of handling new sets of patterns with little 
difficulty, but it is limited in its ability to recognize pat- 
terns independently of position, size and orientation. 

This paper reports the mathematical foundation of two- 
dimensional moment invariants and their applications to 
visual information processing.’ The results show that 
recognition schemes based on these invariants could be 
truly position, size and orientation independent, and also 
flexible enough to learn almost any set of patterns. 

In classical mechanics and statistical theory, the con- 
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cept of moments is used extensively; central moments, 
size normaliza,tion, and principal axes are also used. To 
the author’s knowledge, the two-dimensional moment 
invariants, absolute as well as relative, that are to be 
presented have not been studied. In the pattern recogni- 
tion field, centroid and size normalizatfion have been 
exploited3-5 for “preprocessing.” Orientation normaliza- 
tion has also been attempted.5 The method presented 
here achieves orientation independence without ambiguity 
by using either absolute or relative orthogonal moment 
invariants. The method further uses “moment invariants” 
(to be described in III) or invariant moments (moments 
referred to a pair of uniquely determined principal axes) 
to characterize each pattern for recognition. 

Section II gives definitions and properties of two- 
dimensional moments and algebraic invariants. The mo- 
ment invariants under translation, similitude, orthogonal 
transformations and also under the general linear trans- 
formations are developed in Section III. Two specific 
methods of using moment invariants for pattern recogni- 
tion are described in IV. A simulation program of a simple 
model (programmed for an LGP-SO), the performance 
of the program, and some possible generalizations are 
described in Section V. 

II. MOMENTSANDALGEBRAIC INVARIANTS 

A. A Uniqueness Theorem Concerning Moments 

In this paper, the two-dimensional (p + n)th order 
moments of a density distribution function p(z, y) are 
defined in terms of Riemann integrals as 

m m 
m,, = ss xpYaPb, Y) &J dY, -m -m 

p, q = 0,1,2, *-* . (1) 
If it is assumed that p(z, y) is a piecewise continuous 
therefore bounded function, and that it can have nonzero 
values only in the finite part of the xy plane; then moments 
of all orders exist and the following uniqueness theorem 
can be proved. 

Uniqueness Theorem: The double moment sequence 
{m,,] is uniquely determined by p(s, y); and conversely, 
p(z, y) is uniquely determined by {m,,) . 

It should be noted that the finiteness assumption is 
important; otherwise, the above uniqueness theorem might 
not hold. 

3 W. Pitts and W. S. McCulloch, “How to know universals,” 
Bull. Math. Biophys., vol. 9, pp. 127-147; September, 1947. 

* L. G. Roberts, “Pattern recognition with an adaptive network,” 
1960 IRE INTERNATIONAL CONVENTION RECORD, pt. 2, pp. 66-70. 

6 Minsky, op. cit., pp. 11-12. 
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B. Characteristic Function and Moment Generating Function in terms of the ordinary moments. For the first four 

The characteristic function and moment generating ordersp we have 
function of p(z, y) may be defined, respectively, as poo = moo = CC, EL10 = PO1 = 0, 

exp (iux + ivy)p(x, y) dx dy, (2) 
b. = mzo - ~2, bhl = ml1 - EL@.) 

poz = mo2 - I-$, 

M(u, v) = Irn Irn exp (ux + ~Y>P(x, Y> dx dy. (3) ho = m. - 3mzo3 + 2j.4?, (11) 
-co -m 

bl = ml - m,,y - 2m,,Z + 2j~x’g, 
In both cases, u and v are assumed to be real. If moments 
of all orders exist, then both functions can be expanded kl2 = ml2 - m~2z - 2m11g f 2~zg2~ 
into power series in terms of the moments msp as follows: po3 = mo3 - 3mozfj + 2~$. 

44-b 4 = p$ g m,, y 5 , (4) From here on, for the simplicity of description, all 
. . moments referred to are central moments, and pPg will 

M(u, v) = 2 2 m,, $5. (5) 
be simply expressed as 

n=o ,a=0 co m 
PLpa = 

Both functions are widely used in statistical theory. If ss ~“Y’P(x, y> dx dy, (12) -cc -a 

the characteristic function +(u, v) which is essentially 
the Fourier transform of p(x, y) is known, p(x, y) may be 

and the moment generating function M(u, v) will also 
b e referred to central moments. 

obtained from the following inverse Fourier transform, 

Pb, Y> = & Iem Iwrn 

D. Algebraic Forms and Invariants 
exp (-iux - ivy)C(u, v) du dv. (6) 

m m The following homogeneous polynomial of two variables 

The moment generating function M(u, v) is not as useful 
u and v, 

in this respect, but it is convenient for the discussion in P 
Section III. The close relationships and differences be- 

f = aDouP + 0 1 a8-1,1uQ-1v + : 
0 ap-2,2u v--2,$ 

tween +(u, v) and M(u, v) may be seen much more cleariy, 
if we consider both as special cases of the two-sided Laplace +***+ pTl ( > 

9-l al ,,-w + ao#, (13) 
transform of p(x, y), 

JxPb, Y>l = s-0, j-m 
is called a binary algebraic form, or simply a binary form, 

em (--sx - ~Y)P@, y) dz dy, (7) of order p. Using a notation, introduced by Cayley, the -m 
above form may be written as 

where s and t are now considered as complex variables. 

C. Central Moments 
f = (aDo; a,-,,,; . . . ; al,P-l; ad(u, v)“. (14) 

A homogeneous polynomial I(a) of the coefficients apo, + . * , 
The central moments pPu are defined as a,, is an algebraic invariant of weight w, if 

m co 
&a = ss (x - V)“(Y - $“P(x, Y> d(x: - 3) d(y - 9, 

I(aLo, .** , a&) = AwIbgo, * . . , sop) , (15) 
-cc -a 

(8) where a;,, . a. , a& are the new coefficients obtained from 

where 
substit.uting the following general linear transformation 
into the original form (14). 

Z = mlolmoo, ii = mollmoo. 
(‘I 

It is well known that under the translation of coordinates, 
k]=t ;]L;], A= /, 11 #O. (16) 

2’ = x + a, a, /3 - constants (lo) If w = 0, the invariant is called an absolute invariant; 

Y’ = Y + P, if w # 0 it is called a relative invariant. The invariant 
defined above may depend upon the coefficients of more 

the central moments do not change; therefore, we have t.han one form. Under special linear transformations to 
the following theorem. be discussed in Section III, A may not be limited to the 

Theorem: The central moments are invariants under determinant of the transformation. By eliminating A 
translation. between two relative invariants, a nonintegral absolute 

From (S), it is quite easy to express the central moments invariant can always be obtained. 
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In the study of invariants, it is helpful to introduce 
another pair of variables x and y, whose transformation 
with respect to (16) is as follows: 

then we have 

181 

M,b’, v’> = & z 5 h-40, . . . , P&W, 0. (23) 

i::l = i:. m. (17) 

The transformation (17) is referred to as a cogredient 
transformation, and (16) is referred to as a contragredient 
transformation. The variable x, y are referred to as co- 
variant variables, and u, v as contravariant variables. 
They satisfy the following invariant relation 

ux + vy = u’x’ + v’y’. (18) 

The study of algebraic invariants was started by Boole, 
Cayley and Sylvester more than a century ago, and fol- 
lowed vigorously by others, but interest has gradually 
declined since the early part of this century. The moment 
invariants to be discussed in Section III will draw heavily 
on the results of algebraic invariants. To the authors 
knowledge, there was no systematic study of the moment 
invariants in the sense to be described. 

III. MOMENT INVARIANTS 

A. A Fundamental Theorem of Moment Invariants 

The moment generating function with the exponential 
factor expanded into series form is 

Mb, 4 = j-- j-- z 5 (ux + w)~P(x, Y) dx dy. (1% 
-m -m 

Interchanging the integration and summation processes, 
we have 

M(u, v) = go $ (~~170, . *. > b)(% v)“* (20) 

By applying the transformation (17) to (19), and denoting 
the coefficients of x’ and y’ in the transformed factor 
(ux + vy) by u’ and v’, respectively, or equivalently by 
applying both (16) and (17) simultaneously to (19)) we 
obtain 

.(u’x’ + v’~‘)~~‘(x’, y’) h dx’ dy’ cw 

where p/(x’, y’) = p(x, y), 1 J 1 is the absolute value of 
the Jacobian of the transformation (17), and Ml(u’, v’) 
is the moment generating function after the transfor- 
mation. If the transformed central moments ,LL& are 
defined as 

m m 
I 

Elm = 
ss 

(x’)“(~‘)“~‘(x’, y’) dx’ dy’, 
-cc -m 

p, q = 0, 1,2, *.* (22) 

In the theory of algebraic invariants, it is well known 
that the transformation law for the a coefficients in the 
algebraic form (14) is the same as that for the monomials, 
xpmryr, in the following expression: 

(ux + vyy = (XP) xp-ly, . . . ) y”)(u, v)“. (24) 

From (19), (20), (21) and (23), it can be seen clearly that 
the same relationship also holds between the pth order 
moments and the monomials except for the additional 
factor l/j JI. Therefore, the following fundamental theorem 
is established. 

Fundamental Theorem of Moment Invariants: If the 
algebraic form of order p has an algebraic invariant, 

ICaL,, .-- , 4,) = AwI(apo, . . . , a,,), (25) 

then the moments of order p have the same invariant 
but with the additional factor 1 J 1, 

mo, . . . , P&J = I J I AwlJbLpo, . . . , ~oz,). (26) 

This theorem holds also between algebraic invariants 
containing coefficients from two or more forms of different 
orders and moment invariants containing moments of 
the corresponding orders. 

B. Similitude Moment Invariants 

Under the similitude transformation, i.e., the change 
of size, 

El] = k jc], Ly - constant, (27) 

each coefficient of any algebraic form is an invariant 

I a,, = cy ?-+g app, Gw 

where 01 is not the determinant. For moment invariants 
we have 

I Pm = ff p+9+2 Pm * (29) 

By eliminating OL between the zeroth order relation, 

EL’ = as/L (30) 

and the remaining ones, we have the following absolute 
similitude moment invariants: 

and PL:~ = ,u& = 0. 
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C. Orthogonal Moment Invariants From the identity of first two expressions in (38), it 

Under the following proper orthogonal transformation 
can be seen that I,,,-, is the complex conjugate of Ipdrpr, 

or rotation: 

2’ [I [ cos 0 sin 0 x = II (32) 
Y’ -sin e cos 0 y + i($p-3.3 + . . + + (-i)‘pop, 

we have 
Ll.1 = (kbo + bb-d - ib - 2)(k~,~ + h-,,J (40) 

J= 
cos 19 sin 8 = +1. (33) 

+ . . . + (-i)p%2,p--2 + ~~3, 
-sin 6 cos 0 L-z,2 = (PO0 + 34F-2.2 + Lb-4.4) 

Therefore, the moment invariants are exactly the same 
as the algebraic invariant,s. If we treat the moments as 

- ib - 4)(/G1.1 + 2/J-3,3 + /-%A.~) 

the coefficients of an algebraic form + . . . + (-i)P-4G4,9-4 + ~~~~~~~ + 1.4, 

(ElPO, *-* , POPXU, v)” 

(34) ;_ . . . . . . . . . . . . . . . . . . . . 

?, I,7 = K/.%0; Lb-2.2; * * * ; &-2TJN) 1)‘; 

under the following contragredient transformation: 
b.b-I.l;PP--3,3; *** ;PLp-2~-l,z~+l)(l, 1)'; ** * ; 

r”1=r > 
cos e -sin 0 1r 1 2.4’ 

(35) 
Lvl Lsin 0 cos O-lLv’J 

then we can derive the moment invariants by the following . . . . . . . . . . . . . 
algebraic method. If we subject both u, 0 and u’, v’ to 
the following transformation: and 

p - 2r > 0. 
. . . . . . . . . . . . 

then the orthogonal transformation is converted into the 
following simple relations, 

It may be noted that these (p 
pendent linear functions of the 

U’ = Uemie, V’ = Veis. (37) 

By substituting (36) and (37) into (34), we have the 
following identities: 

E (PLO, . . . , P&W, V’Y 

3 (I;,, . . . , I&J(Ue-i”, Ve;“)“, (38) 

where Ipo, . . . , I,, and Igo, * . . , I&, are the corresponding 
coefficients after the substitutions. From the identity 
in U and V, the coefficients of the various monomials 
U”-‘V’ on the two sides must be the same. Therefore, 

ILo = eipoIpo; I&,,, = eicp-2)oID-l,l; . . . ; 

I:,,-, = e-i(p-2)eIl,,-l; I& = e-ipBIop. (39) 

These are (p + 1) linearly independent moment invariants 
under proper orthogonal transformations, and A = eie 
which is not the determinant of the transformation. 

p = even. 

+ 1) I’s are linearly inde- 
P’S, and vice versa. 

For the following improper orthogonal transformation, 
i.e., rotation and reflection: 

Similarly, we have 

u’ = Veie $7’ = j-Je-ie (42) 

and 

Igo = e-i9010p; IL-l,l = e-i(p-2)811,p-l; . . . ; 

I:,,-, = ei(p-2)oIp~l,l; I& = eipeIpo, (43) 

where IpO, * . * , lop and Iio, * . 9 , I& are the same as those 
given by (40). 

The orthogonal invariants were first studied by Boole, 
and the above method was due to Sylvester.’ 

6 E. B. Elliott, “Algebra of Quantics,” Oxford Univ. Press, Nen- 
York, N. Y., 2nd ed., ch. 15; 1913. 
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D. A Complete System of Absolute Orthogonal Moment 
Invariants 

183 

invariants. By changing the above sums into differences, 
we can also have the skew invariants. 

All the independent moment invariants together form 
a complete system, i.e., for any given invariant; it is 
always possible to express it in terms of the above in- 
variants. The proof is omitted here. 

From (39) and (43), we may derive the following system 
of moment invariants by eliminating the factor eie: 

For the second-order moment.s, the two independent 
invariants are 

I 11) I2oIo2 * (44) 

For the third-order moments, the three independent 
invariants are 

I3Jo3, I2Jl2, (45) 
V3Jf2 + Io3G> * 

A fourth one depending also on the third-order moments 
only is 

(46) 

There exists an algebraic relation between the above four 
invariants given in (45) and (46). The first three given 
by (45) are absolute invariants for both proper and im- 
proper rotations but the last one given by (46) is in- 
variant only under proper rotation, and changes sign under 
improper rotation. This will be called a skew invariant. 
Therefore it is useful for distinguishing “mirror images.” 

One more independent absolute invariant may be 
formed from second and third order moments as follows: 

(I,&2 + IO2I,“l> * (47) 

For pth order moments, p 2 4 we have [p/2], the integral 
part of p/2, invariants 

WIJ,; L-l,Jl,,-1; 0.. ; L,J,,,-,; . . * * (48) 

If p is even, we also have 

I P/2 ,P/2. (49) 

And also combined with (p - 2)th order moments, we 
have [p/2 - I.] invariants 

(L-l.JO,,-2 + ~l.P--lL-2.0), 

(L-2.2I1 .v-3 + I2.P2L3*1>, (59) 

;I,:.:rI:-I,,:,,, + ‘17:,:71;-;+1:Y:1); ‘p’-’ 2; ; b 
. . . . . . . . . . . . . . . . . . . . . . 

combined with second-order moments, if p = odd we have 

u~d2l.rP/2l+l~2o + G~/21+1.IP/21~02), (51) 

if p = even,’ 

uD,2--1.P,2+1~220 + L/2+1,*,2-lJcl2). (52) 

Therefore we always have (p + 1) independent absolute 

7 For p = 4, (52) is the same as the one given by (50); instead 
of (52), (Jd02 + Idd) may be used. 

E. Moment Invariants Under General Linear 
Transformations 

From the theory of algebraic invariants under the 
general linear transformations (17), it is known that the 
factor A is the determinant of the transformation. For 
linear transformations, J is also the determinant. For 
simplicity, let A, B, C and a, 6, c, d denote the second and 
third order moments, then we may write the following 
two binary forms in terms of these moment’s as 

(53) 

From the theory of algebraic invariants, we have the 
following four algebraically independent invariants, 

I, = AC - B’, 

Iz = (ad - bc)* - 4(ac - b’)(bd - c”), 

I, = A(bd - c’) - B(ad - bc) + C(ac - b2), 

I, = a2C3 - 6abBC’ + BacC(2B ’ - AC) 

+ ad(6ABC - 8s”) 

+ 9b2AC2 - 18bcABC + 6bdA(2B2 - AC) 

+ 9c2A2C - 6cdBA’ + d2A3, 

of weight w = 2, 6, 4 and 6, respectively. 
For the zeroth order moment, we have 

(54) 

P I= IJIp. 55) 
With the understanding that A2 = j J j2, the following 
four absolute moment invariants are obtained, 

(56) 

There also exists a skew invariant,’ 15, of weight 9 de- 
pending on the moments A, B, C and a, b, c, d. This also 
may be normalized as 

(57) 

where A/l J 1 indicates the sign of the determinant. This 
invariant contains thirty monomial terms, and it is not 
algebraically independent. 

By counting the number of relations among the moments 
and the number of parameters involved, it can be shown 

8 G. Salmon, “Modern Higher Algebra,” Stechert, 
N. Y., 4th ed., p. 188; 1885. (Reprinted 1924.) 

New York, 
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that four is the largest number of independent invariants The discrimination property of the patterns is increased 
possible for this case. Various methods have been de- if higher moments are also used. The higher moments 
veloped in finding algebraic invariants, and many in- with respect to the principal axes can be determined with 
variants have been worked out in detail. In case extension ease, if the invariants given by (39) and (40) are used. 
to higher moment invariants are required, the known These relations are also useful in other ways. As an 
results for algebraic invariants will be of great help. illustration, for p = 3 we have 

IV. VISUAL INFORMATION PROCESSING AND RECOGNITION 

A. Pattern Characterization and Recognition 

Any geometrical pattern or alphabetical character can 
always be represented by a density distribution function 
p(x, y), with respect to a pair of axes fixed in the visual 
field. Clearly, the pattern can also be represented by its 
two-dimensional moments, mpq, with respect to the pair 
of fixed axes. Such moments of any order can be obtained 
by a number of methods. Using the relations between 
central moments and ordinary moments, the central 
moments can also be obtained. Furthermore, if these 
central moments are normalized in size by using the 
similitude moment invariants, then the set of moment 
invariants can still be used to characterize the particular 
pattern. Obviously, these are independent of the pattern 
position in the visual field and also independent of the 
pattern size. 

Two different ways will be described in the next two 
sections to accomplish orientation independence. In these 
cases, theoretically, there exist either infinitely many 
absolute moment invariants or infinitely many normalized 
moments with respect to the principal axes. For the 
purpose of machine recognition, it is obvious that only a 
finite number of them can be used. In fact, it is believed 
only a few of these invariants are necessary for many 
applications. To illustrate this point, a simple simulation 
program, using only two absolute moment invariants, and 
its performance will be described in Section V. 

B. The Method of Principal Axes 

In (39) and (40), let p = 2, we have the following 
moment invariants, 

b-40 - I*&) - 72.4, = eize[(pLzo - po2) - i2pll], 

(&I - 1.4~) + i2clL = e-i2e[(p20 - po2) + i2pLll], 

/do + PA2 = b!o + po2- 

If the angle 0 is determined from the first equation 

to make pfi = 0, then we have 

tan28 = +%I1 . 
P20 - /hz 

(58) 

in (58), 

(J-9 

The x’, y’ axes determined by any particular values of 0 
satisfying (59) are called the principal axes of the pattern. 
With added restrictions, such as pi0 > & and I.&, > 0, 
0 can be determined uniquely. Moments determined for 
such a pair of principal axes are independent of orienta- 
tion. If this is used in addition to the method described 
in the last section, pattern identification can be made 
independently of position, size and orientation. 

( PL:ll - 3&) - iB.& - 1.4~) 

= ei3e[(p30 - 3PL12) - i(3PL21 - klJ1, (60) 

= eiel(p30 + 1.4 - ib2l + dl. 
The two remaining relations, which are the complex 
conjugate of these two, are omitted here. If 0 and the 
four third moments are known, the same moments with 
respect to the principal axes can be computed easily by 
using the above relations. There is no need of trans- 
forming the input pattern here. 

In the above method, because of the complete orienta- 
tion independence property, it is obvious that the numerals 
“6” and “9” can not be distinguished. If the method is 
modified slightly as follows, it can differentiate “6” from 
“9” while retaining the orientation independence property 
to a limited ext!ent. The value of 6’ is still determined by 
(59), but it is also required to satisfy the condit,ion 
j 0 1 < 45 degrees. The use of third order moments in this 
case is also essential. 

If the given pattern is of circular symmetry or of n-fold 
rotational symmetry, then the determination of 0 by (59) 
breaks down. This is due to the fact that both the numer- 
ator and the denominator are zero for such patterns. 
As an example, assume that the pattern is of 3-fold 
rotational symmetry, i.e., if the pattern is turned 2a/3 
radians about its centroid, it is identically the same as 
the original. In the first equation in (58), there are only 
two possible values for e to make the imaginary part of 
I& = 0, i.e., to make & = 0. Under this symmetry re- 
quirement, there are more than two possible values to 
make the imaginary part of Ii,, = 0; therefore, the only 
possibility is to have I;, = 0, and also I,, = 0. In this 
3-fold rotational symmetry case, the first equation in (60) 
can be used to determine the 0 and the principal axes by 
requiring 3& - ph3 = 0. Based upon this example, we 
may state the following theorem. 

Theorem: If a pattern is of n-fold rotational symmetry, 
than all the orthogonal invariants, I’s, with the factor 
e *iwO and w/n # integer must be identically equal to 
zero. For the limiting case of circular summetry, only 
I,,, 12% * * * are not zero. 

For patterns with mirror symmetry, a similar theorem 
may be derived. 

C. The Method of Absolute Moment Invariants 

The absolute orthogonal moment invariant described 
in Section III-D can be used directly for orientation inde- 
pendent pattern identification. If these invariants are 
combined with the similitude invariants of central mo- 
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ments, then pattern identification can be made inde- 
pendently of position, size and orientation. A specific 
example is given in Section V-A. 

For the second and third order moments, we have the 

185 

Assume the program or model has already learned a 
number of patterns, represented by (Xi, Yi), i = 1,2, . . * , 
n, together with their names. If a new pattern is presented 
to the model, a new point (X, Y) and the distances 

di = -t/(X-X,)“+(Y- YJ’, i = 1,2, +a. ,n (64) following six absolute orthogonal invariants: 

Pm + hz, 

~E120 - /d + 4/&, 

(Pm - 3&J + (3/.& - PJ, 

&I + PJ + b-&l + PJ, 

(ho - 3&(/J30 + Pl2)Kkl + Ad - 3(11l21 + Ldl 
+ (31121 - d(P21 + h3) 

~[3~kO + PJ - h21 + PJI, 
(Pm - PoJKP30 + PJ - (Pa + PJI 

+ 4!J11(1*30 + cl&J21 + POJ, 

and one skew orthogonal invariants, 

(3 P21 - Po3hm + bh2)[b-hl + P12)2 - 3(/JZ + PJI 

(‘31) 

This skew invariant is useful in dist,inguishing mirror 
images. 

This method can be generalized to accomplish pattern 
identification not only independently of position, size 
and orientation but also independently of parallel pro- 
jection. In this generalization the general moment in- 
variants are used instead of the orthogonal and similitude 
moment invariants. 

V. VISUAL PATTERN RECOGNITION MODELS 

A. The Simulation of a Simple Model 

A simulation program of a simple pattern recognition 
model, using only two moment invariants, has been writte.n 
for an LGP-30 computer. No information, properties, or 
features about the patterns to be recognized are contained 
in the simulation program itself; it learns. The visual 
field is a 16 X 16 matrix of small squares. A pattern is 
first projected onto the matrix and then each small square 
is digitalized to the values, 0, 2, 4, 6, or 8. After loading 
each pattern, the following two moment invariant’s’ 

x = Pm + PO2 

y = VLO - Ad2 + 4/J;, 
(63) 

are computed. The central moments, pZU, pl1, poZ used 
above (normalized wit.h respect to size) are obtained from 
the ordinary moments by (11). This point (X, Y) in a two 
dimensional space is used as a representation of the 
pattern. 

between (X, Y) and (Xi, Yi) are computed. Let the 
minimum distance, d,i,, be defined as 

dmin = min di. 
i (65) 

The distance d, satisfying d, = dmi, is selected (if more 
than one of the distances satisfying the condition, one d, 
is selected at random). Then d, is compared with a pre- 
selected recognition level L. 1) If d, > L, the computer 
will type out “I do not know”, then wait to learn the 
name of the new pattern. If a name is now entered, t,he 
computer then stores (X, Y) as (X,,,, Y,,+l) together 
with the assigned name. Hence, a new pattern is learned 
by the program. 2) If dk 5 L, the computer will identify 
the pattern with (X,, YJ by typing out the name as- 
sociated. 

A very simple performance-improving program is also 
incorporated. When this program is used, it replaces the 
values of Xi, Yi corresponding to the name now told, by 

$-1)x,+x], $-l)Yi+Y] a>l. (66) 

This operation moves the point (Xi, Yi) toward (X, Y). 

B. Performance of the Simulation Program 

Several experiments have been tried on the simulation 
program. For the convenience of description, two patterns 
are described as strictly similar, if one pattern can be 
transformed exactly into the other by a combination of 
translation, rotation and similitude transformat.ions. In 
one experiment, patterns which are strictly similar after 
digitalization were fed to the program. If any one of 
such patterns is taught to the program just once, then it 
can identify correctly any other pattern of the same class. 
The number of different pattern classes capable of being 
learned is quite large, even with this simple program. 
There is no wrong identification except for specially 
constructed patterns. 

Another experiment dealt with character recognition. 
A set of twenty-six capital letters from a ‘J-inch Duro 
Lettering Stencils were copied onto the 16 X 16 matrix 
and digitalized as inputs to the program. The values of 
X and Y, in arbitrary units, are given in Table I and 
Fig. 1, and two samples of the digitalized inputs for the 
letter M and W are shown in Fig. 2. The following may 
be noted: 

1) Fig. 1 shows that the points for all the twent,y-six 
letters are separated. 

2) If inputs, prepared by using the same stencils but 
not strictly similar after digitalization are used, the cor- 
responding points are not the same as those shown in g X and Y are, respectively, the sum and difference of the two 

second moments with respect to the principal axes, and may be 
interpreted as “spread” and “slenderness.” Fig. 1. For a limited number of cases tried, the maximum 



186 IRE TRANSACTIONS ON 

X Y 

6.2020 2.4986 
6.1104 2.0853 

10.4136 4.1818 
8.2045 3.0911 
8.2147 4.3144 
8.0390 4.5017 
8.6096 3.0127 
7.6243 1.1825 

11.9780 11.2824 
10.4118 6.6854 

7.3278 2.5620 
12.0662 8.3889 

5.7356 0.0540 

TABLE I 

X 

5.7885 
8.2829 
7.0329 
6.7674 
6.2707 
7.7501 

10.6216 
9.1728 
6.8761 

KE 
8.3538 
8.8843 

- 

.- 

- 

Y 

1.7933 
2.6246 
2.6456 
1.9611 
1.9149 
3.3660 
7.1239 
2.1383 
3.2715 
0.1893 
3.5651 
3.8612 
5.1580 

12 

II 

IO 

9 

8 r---t-t 

4 5 6 7 8 9 IO II I2 x 

Fig. l-Point representation of the twenty-six capital let,ters. 

variation in terms of distance between two points repre- 
senting the same letter is of the order of 0.5. Compared 
with Fig. 1, it is obvious that overlapping of some classes 
will occur. If the resolution of the visual field is increased, 
the performance will definitely be improved. 

3) In Fig. 1, it can be seen that some letters which are 
close to each other are of considerable difference in shape. 
A typical case is shown in Fig. 2, it is not difficult to 
conclude that the third order moments for the M and W 
examples shown will be considerably different. 

From these results, it is clear that both the resolution 
and the number of invariants used should be increased 
but probably not greatly. 

One additional experiment concerned the simple learning 
program. In this experiment, patterns belonging to the 
same class were generally represented by different points, 
clustered together, in the plane. As already described, a 
class represented by such a cluster was represented by a 
single point in this program, but this point together with 
the recognition level really form a circular recognition 
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t t tatatatat6tatatatat t t t t 
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t t t6tatat0t4tatatat6t t t t t 
t t t4tatat6t t6tatat4t t t t t 
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t t t t(jtatpt ‘2’8’6’ t t t t t 
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tttttttttttttttt 

Fig. ~-TWO samples of the ~Idita&ised inputs for the letters M 

region for the class. For good performance, this region 
should be centered over the cluster of points representing 
the class. The point for the first sample of a class is not 
necessarily at the center of this region. Because of this 
fact, incorrect identifications may occur. The simple 
learning program, sometimes, is useful for such cases. 
If the clusters of points of different classes do not ‘overlap,’ 
generally, the program will improve the performance; 
otherwise, the performance may become worse. Another 
learning program will be described in the next section. 

C. Other Visual Pattern Recognition Models 

From the simulation program and the theoretical con- 
siderations described in IV, a considerably improved pat- 
tern recognition model is as follows: P absolute moment 
invariants or P normalized moments with respect to the 
principal axes, denoted by X’, X2, . . * , Xp, are used; 
and the point (X) = (X’, X2, . . . , X’) in a P dimensional 
space is used as the representation for a pattern. It is 
believed that P = 6, (i.e., using four more invariants 
related to the third order moments) and a 32 X 32 or 
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50 X 50 matrix as the visual field will be adequate for 
many purposes. 

Let (X,), i = 1, 2, 0.. , n be the points representing 
the patterns already learned, and Ni be the number of 
samples of the ith pattern already learned. After each 
learning process for the it,h pattern, Ni is replaced by 
(Ni + 11, and (Xi) by 

where (X) is the representation of the new sample. This 
new (Xi) is obviously equal to the average of all the 
(Ni + 1) samples learned. 

Instead of using a common recognition level, L, a 
separate one is determined for each pattern class in the 
learning process. After each sample is learned, Li is 
replaced by the larger one of 

Li and de 033) 

The Li thus determined, as the sample number increases, 
approaches the minimum radius of a hypersphere which 
includes most if not all the sample points in its interior. 
The center of the hypersphere is located at (Xi). 

In this model, the following are stored for each class 
of patterns learned, 

Name, (X,), L,, Ni. (69) 

(Xi) and L; form a spherical recognition region for the 
ith pattern. When a new pattern represented by (X) 
is entered, the distances 

di = J 5 (XT - x-)2 i = 1,2, 
*=1 

are computed. The distances di satisfying 

di 5 Li 

are then selected. If no di is obtained, 
considered as not yet learned, otherwise 

D. = ii 1 
Ni 

is computed and 

D, = min (Di) 
1 

* . . 
,n (70) 

(71) 

the pattern is 

(72) 

(73) 

is selected, as in Section V-A, to identify the pattern. 
The use of N, in the identification is believed to be useful 
when overlapping occurs. 

If automatic input and digitalization equipment is 
used, there may be other types of noise introduced in 
addition to that due to digit#alization. The well known 
local averaging process*o’11 can be used to reduce some 
of such noise, but the potent#ial for discrimination possessed 
by such models is useful to combat whatever remains. 
In this connection, it seems worthwhile to point out the 
following two facts. 1) If two classes are separated, say, 
in two dimensions; they can never overlap when additional 
dimensions are introduced. 2) The use of moment in- 
variants makes possible the derivation of models which 
may automatically generate additional dimensions- 
moment invariants-for the purpose of discrimination or 
combating noise. 

The representation of a pattern by a point in a P 
dimensional space converts the problem of pattern recogni- 
tion into a problem of statistical decision theory. De- 
pending upon the particular decision method used, dif- 
ferent statistical models may be devised. The work done 
by Sebestyen” is an example, his method can be used 
here directly. 

The method of principal axes developed here has another 
application in connection with the statistical approaches 
mentioned at the beginning of this paper. It may be used 
as a preprocessor to normalize the inputs before the main 
processer is used. All the parameters necessary for trans- 
lation, size and orientation normalizations can be ob- 
tained from some of the relations used in the method of 
principal axes. Such a preprocessor undoubtedly will 
increase the ability of the models based upon the statistical 
approach. 
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