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Fitting:
Deformable contours

Monday, Feb 21
Prof. Kristen Grauman

UT-Austin

Recap so far:
Grouping and Fitting

Goal: move from array of pixel values (or 
filter outputs) to a collection of regions, 
objects, and shapes.

Grouping: Pixels vs. regions

image clusters on intensity

clusters on colorimage

By grouping pixels 
based on Gestalt-
inspired attributes, 
we can map the 
pixels into a set of 
regions. 

Each region is 
consistent 
according to the 
features and 
similarity metric we 
used to do the 
clustering.

Kristen Grauman

Fitting: Edges vs. boundaries

Edges useful signal to 
indicate occluding 
boundaries, shape.

Here the raw edge 
output is not so bad…

…but quite often boundaries of interest 
are fragmented, and we have extra 
“clutter” edge points.Images from D. Jacobs Kristen Grauman

Given a model of 
interest, we can 
overcome some of the 
missing and noisy 
edges using fitting
techniques.  

With voting methods 
like the Hough 
transform, detected 
points vote on possible 
model parameters.

Fitting: Edges vs. boundaries

Kristen Grauman

Voting with Hough transform

• Hough transform for fitting lines, circles, arbitrary 
shapes
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In all cases, we knew the explicit model to fit.
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• Fitting an arbitrary shape with “active” 
deformable contours

Today Deformable contours
a.k.a. active contours, snakes

Given: initial contour (model) near desired object 

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987] Figure credit: Yuri Boykov

Deformable contours

Given: initial contour (model) near desired object 

a.k.a. active contours, snakes

Figure credit: Yuri Boykov

Goal: evolve the contour to fit exact object boundary   

[Snakes: Active contour models, Kass, Witkin, & Terzopoulos, ICCV1987]

Main idea: elastic band is 
iteratively adjusted so as to

• be near image positions with 
high gradients, and

• satisfy shape “preferences” or 
contour priors

Deformable contours: intuition

Image from http://www.healthline.com/blogs/exercise_fitness/uploaded_images/HandBand2-795868.JPG Kristen Grauman

Deformable contours vs. Hough

initial intermediate final

Like generalized Hough transform, useful for shape fitting; but

Hough
Rigid model shape

Single voting pass can 
detect multiple instances

Deformable contours
Prior on shape types, but shape 
iteratively adjusted (deforms)

Requires initialization nearby

One optimization “pass” to fit a 
single contour

Kristen Grauman

Why do we want to fit 
deformable shapes?

• Some objects have similar basic form but 
some variety in the contour shape.

Kristen Grauman
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Why do we want to fit 
deformable shapes?

• Non-rigid, 
deformable 
objects can 
change their 
shape over 
time, e.g. lips, 
hands…

Figure from Kass et al. 1987
Kristen Grauman

Why do we want to fit 
deformable shapes?

• Non-rigid, 
deformable 
objects can 
change their 
shape over 
time, e.g. lips, 
hands…

Kristen Grauman

Figure credit: Julien Jomier

Why do we want to fit 
deformable shapes?

• Non-rigid, deformable objects can change their shape 
over time.

Kristen Grauman

Aspects we need to consider

• Representation of the contours

• Defining the energy functions
– External

– Internal

• Minimizing the energy function

• Extensions:
– Tracking

– Interactive segmentation

Kristen Grauman

Representation

• We’ll consider a discrete representation of the contour, 
consisting of a list of 2d point positions (“vertices”).
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• At each iteration, we’ll have the 
option to move each vertex to 
another nearby location (“state”).
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Fitting deformable contours

initial intermediate final

How should we adjust the current contour to form the new 
contour at each iteration?

• Define a cost function (“energy” function) that says how 
good a candidate configuration is.

• Seek next configuration that minimizes that cost function.
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Energy function

The total energy (cost) of the current snake is 
defined as:

externalinternaltotal EEE 

A good fit between the current deformable contour 
and the target shape in the image will yield a low
value for this cost function.

Internal energy: encourage prior shape preferences: 
e.g., smoothness, elasticity, particular known shape.

External energy (“image” energy): encourage contour to 
fit on places where image structures exist, e.g., edges.

External energy: intuition

• Measure how well the curve matches the image data

• “Attract” the curve toward different image features

– Edges, lines, texture gradient, etc.

External image energy

Magnitude of gradient
- (Magnitude of gradient)

 22 )()( IGIG yx 
22 )()( IGIG yx 

How do edges affect “snap” of 
rubber band?

Think of external energy from 
image as gravitational pull 
towards areas of high contrast

Kristen Grauman

• Gradient images                 and

• External energy at a point on the curve is:

• External energy for the whole curve:
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Internal energy: intuition

What are the underlying 
boundaries in this fragmented 
edge image?

And in this one?

Kristen Grauman

A priori, we want to favor smooth shapes, contours with 
low curvature, contours similar to a known shape, etc. 
to balance what is actually observed (i.e., in the gradient 
image).

Internal energy: intuition

Kristen Grauman
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Internal energy

For a continuous curve, a common internal energy term 
is the “bending energy”.  

At some point v(s) on the curve, this is:

Tension,
Elasticity

Stiffness,
Curvature
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• For our discrete representation, 

• Internal energy for the whole curve:
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Internal energy

Note these are derivatives relative to position---not spatial 
image gradients.

Why do these reflect tension and curvature?

Kristen Grauman

Example: compare curvature
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Penalizing elasticity

• Current elastic energy definition uses a discrete estimate 
of the derivative:

What is the possible problem 
with this definition?
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Penalizing elasticity

• Current elastic energy definition uses a discrete estimate 
of the derivative:
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where d is the average distance between 
pairs of points – updated at each iteration.

Instead:

Kristen Grauman

Dealing with missing data

• The preferences for low-curvature, smoothness help 
deal with missing data:

[Figure from Kass et al. 1987]

Illusory contours found!
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Extending the internal energy: 
capture shape prior

• If object is some smooth variation on a 
known shape, we can use a term that 
will penalize deviation from that shape:

where           are the points of the 
known shape.
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Fig from  Y. Boykov

Total energy: function of the weights

externalinternaltotal EEE 
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• e.g.,    weight controls the penalty for internal elasticity

Fig from  Y. Boykov

Total energy: function of the weights Recap: deformable contour

• A simple elastic snake is defined by:
– A set of n points,

– An internal energy term (tension, 
bending, plus optional shape prior)

– An external energy term (gradient-based) 

• To use to segment an object:
– Initialize in the vicinity of the object

– Modify the points to minimize the total 
energy

Kristen Grauman

Energy minimization

• Several algorithms have been proposed to fit 
deformable contours.  

• We’ll look at two:
– Greedy search

– Dynamic programming (for 2d snakes)

Energy minimization: greedy

• For each point, search window around 
it and move to where energy function 
is minimal
– Typical window size, e.g., 5 x 5 pixels

• Stop when predefined number of 
points have not changed in last 
iteration, or after max number of 
iterations

• Note:

– Convergence not guaranteed

– Need decent initialization

Kristen Grauman
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Energy minimization

• Several algorithms have been proposed to fit 
deformable contours.  

• We’ll look at two:
– Greedy search

– Dynamic programming (for 2d snakes)

1v
2v

3v

4v
6v

5v

With this form of the energy function, we can minimize 
using dynamic programming, with the Viterbi algorithm.

Iterate until optimal position for each point is the center 
of the box, i.e., the snake is optimal in the local search 
space constrained by boxes.

[Amini, Weymouth, Jain, 1990]
Fig from  Y. Boykov

Energy minimization: 
dynamic programming

Energy minimization: 
dynamic programming
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• Possible because snake energy can be rewritten as a 
sum of pair-wise interaction potentials:

• Or sum of triple-interaction potentials.
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Re-writing the above with                      : iii yxv ,

Kristen Grauman
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Main idea: determine optimal position (state) of predecessor, 
for each possible position of self.  Then backtrack from best 
state for last vertex.
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Viterbi algorithm

Example adapted from Y. Boykov
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With this form of the energy function, we can minimize 
using dynamic programming, with the Viterbi algorithm.

Iterate until optimal position for each point is the center 
of the box, i.e., the snake is optimal in the local search 
space constrained by boxes.

[Amini, Weymouth, Jain, 1990]
Fig from  Y. Boykov

Energy minimization: 
dynamic programming
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),(...),(),( 11322211 nnn vvEvvEvvE 
DP can be applied to optimize an open ended snake 

For a closed snake, a “loop” is introduced into the total energy.
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Work around: 

1) Fix v1 and solve for rest .

2) Fix an intermediate node at 
its position found in (1), 
solve for rest.

Energy minimization: 
dynamic programming Aspects we need to consider

• Representation of the contours

• Defining the energy functions
– External

– Internal

• Minimizing the energy function

• Extensions:
– Tracking

– Interactive segmentation

Tracking via deformable contours

1. Use final contour/model extracted at frame  t as 
an initial solution for frame t+1

2. Evolve initial contour to fit exact object boundary 
at frame t+1

3. Repeat, initializing with most recent frame.

Tracking Heart Ventricles 
(multiple frames)

Kristen Grauman

Visual Dynamics Group, Dept. Engineering Science, University of Oxford.

Traffic monitoring
Human-computer interaction
Animation
Surveillance
Computer assisted diagnosis in medical imaging 

Applications:

Tracking via deformable contours

Kristen Grauman

3D active contours
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• May over-smooth the boundary

• Cannot follow topological changes of objects

Limitations
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Limitations
• External energy: snake does not really “see” object 

boundaries in the image unless it gets very close to it.

image gradients
are large only directly on the boundary

I

Distance transform

• External image can instead be taken from the distance 
transform of the edge image. 

original -gradient distance transform

edges

Value at (x,y) tells how far 
that position is from the 
nearest edge point (or other 
binary mage structure) 

>> help bwdist
Kristen Grauman

Deformable contours: pros and cons

Pros:
• Useful to track and fit non-rigid shapes

• Contour remains connected

• Possible to fill in “subjective” contours

• Flexibility in how energy function is defined, weighted.

Cons:
• Must have decent initialization near true boundary, may 

get stuck in local minimum

• Parameters of energy function must be set well based on 
prior information

Kristen Grauman

Summary

• Deformable shapes and active contours are useful for

– Segmentation: fit or “snap” to boundary in image

– Tracking: previous frame’s estimate serves to initialize the next

• Fitting active contours:

– Define terms to encourage certain shapes, smoothness, low 
curvature, push/pulls, …

– Use weights to control relative influence of each component cost 

– Can optimize 2d snakes with Viterbi algorithm.

• Image structure (esp. gradients) can act as attraction 
force for interactive segmentation methods.

Kristen Grauman


