

Image warping and stitching

Monday Feb 28 Prof. Kristen Grauman UT-Austin

HP frames commercials

 http://www.youtube.com/watch?v=2RPI5vPEo Qk

Announcements

- Reminder: Pset 2 due Wed March 2
- Reminder: Midterm exam is Wed March 9

 See practice exam handout
- My office hours Wed: 12:15-1:15
- Matlab license issues see course website
- Pset 1 and solutions were returned last week grades online

Last time

- Interactive segmentation
- Feature-based alignment - 2D transformations
 - Affine fit
 - RANSAC

Today

- RANSAC for robust fitting – Lines, translation
- Image mosaics
 - Fitting a 2D transformationAffine, Homography
 - 2D image warping
 - Computing an image mosaic
 - Wednesday: which local features to match?

Alignment problem We have previously considered how to fit a model to image evidence e.g., a line to edge points, or a snake to a deforming contour In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs ("correspondences"). x;

RANSAC

- RANdom Sample Consensus
- **Approach**: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- **Intuition**: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC: General form

- RANSAC loop:
- 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find inliers to this transformation
- 4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

RANSAC for line fitting

Repeat **N** times:

- Draw **s** points uniformly at random
- Fit line to these **s** points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than *t*)
- If there are *d* or more inliers, accept the line and refit using all inliers

Lana Lazebni

That is an example fitting a model (line)...

What about fitting a transformation (translation)?

How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
 - Take a sequence of images from the same position
 Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)
- ...but wait, why should this work at all?
- What about the 3D geometry of the scene?
- Why aren't we using it?

Source: Steve Seitz

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
 - Take a sequence of images from the same position
 Rotate the camera about its optical center
 - Compute transformation (homography) between second image and first using corresponding points.
 - Transform the second image to overlap with the first.
 - Blend the two together to create a mosaic.
 - (If there are more images, repeat)

Source: Steve Seitz

- Write **2d transformations** as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Perform image warping (forward, inverse)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- **Mosaics**: uses homography and image warping to merge views taken from same center of projection.

