

Announcements

- Reminder: Pset 2 due Wed March 2
- Reminder: Midterm exam is Wed March 9
- See practice exam handout
- My office hours Wed: 12:15-1:15
- Matlab license issues - see course website
- Pset 1 and solutions were returned last week -
grades online

Today

- RANSAC for robust fitting
- Lines, translation
- Image mosaics
- Fitting a 2D transformation
- Affine, Homography
- 2D image warping
- Computing an image mosaic
- Wednesday: which local features to match?
o match?

HP frames commercials

- http://www.youtube.com/watch?v=2RPI5vPEo Qk

Last time

- Interactive segmentation
- Feature-based alignment
- 2D transformations
- Affine fit
- RANSAC

Alignment problem

- We have previously considered how to fit a model to image evidence
- e.g., a line to edge points, or a snake to a deforming contour
- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs ("correspondences").

Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

Let's represent T as a matrix:

$$
\begin{gathered}
\mathrm{p}^{\prime}=\mathbf{M p} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

Outliers affect least squares fit

Outliers

- Outliers can hurt the quality of our parameter estimates, e.g.,
- an erroneous pair of matching points from two images
- an edge point that is noise, or doesn't belong to the line we are fitting.

Outliers affect least squares fit

RANSAC

- RANdom Sample Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC: General form

- RANSAC loop:

1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers

RANSAC for line fitting

Repeat \boldsymbol{N} times:

- Draw \boldsymbol{s} points uniformly at random
- Fit line to these \boldsymbol{s} points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

That is an example fitting a model (line)...

What about fitting a transformation (translation)?

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

Today

- RANSAC for robust fitting
- Lines, translation
- Image mosaics
- Fitting a 2D transformation
- Affine, Homography
-2D image warping
- Computing an image mosaic

Affine model approximates perspective projection of planar objects.

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

$$
\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]
$$

2D Affine Transformations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Affine transformations are combinations of ...

- Linear transformations, and
- Translations

Parallel lines remain parallel

Projective Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Projective transformations:

- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

Pinhole camera

- Pinhole camera is a simple model to approximate imaging process, perspective projection.

If we treat pinhole as a point, only one ray from any given point can enter the camera.

Fig from Forsyth and Ponce

Mosaics: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

How to stitch together a panorama

 (a.k.a. mosaic)?- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)
- ...but wait, why should this work at all?
- What about the 3D geometry of the scene?
- Why aren't we using it?

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines called Homography

$$
\left.\begin{array}{r}
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]} \\
\mathbf{p}
\end{array}\right]=\begin{array}{rrr}
{\left[\begin{array}{rrr}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\mathbf{H} & \mathbf{p}
\end{array}
$$

Source: Alyosha Efros

Solving for homographies

$$
\begin{gathered}
\text { p' = Hp } \\
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Can set scale factor $i=1$. So, there are 8 unknowns.
Set up a system of linear equations:
$\mathrm{Ah}=\mathrm{b}$
where vector of unknowns $\mathrm{h}=[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}]^{\top}$
Need at least 8 eqs, but the more the better..
Solve for h . If overconstrained, solve using least-squares:

$$
\min \|A h-b\|^{2}
$$

> help lmdivide
BOARD

Today

- RANSAC for robust fitting
- Lines, translation
- Image mosaics
- Fitting a 2D transformation
- Affine, Homography
-2D image warping
- Computing an image mosaic

Forward warping

Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in the second image
Q: what if pixel lands "between" two pixels?

Slide from Alyosha Efros, CMU

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location

$$
(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right) \text { in the first image }
$$

Q: what if pixel comes from "between" two pixels?
Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime}) - Known as "splatting"

Slide from Alyosha Efros, CMU

Inverse warping

Bilinear interpolation

Sampling at $f(x, y)$:

$f(x, y)=(1-a)(1-b) \quad f[i, j]$
$+a(1-b) \quad f[i+1, j]$
$+a b \quad f[i+1, j+1]$

$$
+(1-a) b \quad f[i, j+1]
$$

A: Interpolate color value from neighbors

- nearest neighbor, bilinear.
>> help interp2

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation (homography) between second image and first using corresponding points.
- Transform the second image to overlap with the first.
- Blend the two together to create a mosaic.
- (If there are more images, repeat)

Analysing patterns and shapes

Automatic rectification

From Martin Kemp, The Science of Art (manual reconstruction)

...Or: Planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!
This is how big aerial photographs are made

Summary: alignment \& warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Perform image warping (forward, inverse)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Mosaics: uses homography and image warping to merge views taken from same center of projection.

Next time: which features should we match?

