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Local features 
and image matchingg g

Wed March 2
Prof. Kristen Grauman

UT‐Austin

Announcements

• Reminder: Pset 2 due tomorrow

• Reminder: Midterm exam is Wed March 9

– See practice exam handout from last time

• My office hours today: 12:15‐1:15

Last time

• RANSAC for robust fitting 
– Lines, translation

• Image mosaics
Fitti 2D t f ti– Fitting a 2D transformation

• Affine, Homography

Today

Mosaics wrap-up:

How to detect which features to match?

Mosaics wrap up:
How to warp one image to the other, given H?

Motivation for feature-based alignment:
Image mosaics

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fal

Projective Transformations

Projective transformations:

• Affine transformations, and
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• Projective warps

Parallel lines do not necessarily remain parallel
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How to stitch together a panorama 
(a.k.a. mosaic)?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and first

T f th d i t l ith th fi t– Transform the second image to overlap with the first

– Blend the two together to create a mosaic

– (If there are more images, repeat)

• …but wait, why should this work at all?

– What about the 3D geometry of the scene?

– Why aren’t we using it?

Source: Steve Seitz

Mosaics

. . .

Obtain a wider angle view by combining multiple images.
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Image reprojection
Basic question

• How to relate two images from the same camera center?
– how to map a pixel from PP1 to PP2

PP2
Answer

• Cast a ray through each pixel in PP1

PP1

Cast a ray through each pixel in PP1

• Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D 
reprojection, think of it as a 2D 
image warp from one image to 
another.

Source: Alyosha Efros

Image reprojection: Homography

A projective transform is a mapping between any two PPs 
with the same center of projection
• rectangle should map to arbitrary quadrilateral 

• parallel lines aren’t

• but must preserve straight lines

called Homography PP2g p y

PP1
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H pp’

Source: Alyosha Efros

Homography

 11, yx  11, yx 

 22 , yx  22 , yx

…

…

To compute the homography given pairs of corresponding 
points in the images, we need to set up an equation where 
the parameters of H are the unknowns…

 nn yx ,  nn yx  ,

Solving for homographies

Can set scale factor i=1. So, there are 8 unknowns.

Set up a system of linear equations:
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p’ = Hp

Set up a system of linear equations:

Ah = b

where vector of unknowns h = [a,b,c,d,e,f,g,h]T

Need at least 8 eqs, but the more the better…

Solve for h. If overconstrained, solve using least-squares: 

>> help lmdivide

2
min bAh 
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Homography
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H pp’

To apply a given homography H
• Compute p’ = Hp   (regular matrix multiply)

• Convert p’ from homogeneous to  image 
coordinates

Image warping

’

T(x,y)
y y’

Given a coordinate transform and a source image 
f(x,y), how do we compute a transformed 
image g(x’,y’) = f(T(x,y))?

x x’f(x,y) g(x’,y’)

Slide from Alyosha Efros, CMU

Forward warping

’

T(x,y)
y y’

f(x,y) g(x’,y’)

Send each pixel f(x,y) to its corresponding location 

(x’,y’) = T(x,y) in the second image

x x’

Q:  what if pixel lands “between” two pixels?

Slide from Alyosha Efros, CMU

Forward warping

’

T(x,y)
y y’

f(x,y) g(x’,y’)

Send each pixel f(x,y) to its corresponding location 

(x’,y’) = T(x,y) in the second image

x x’

Q:  what if pixel lands “between” two pixels?

A:  distribute color among neighboring pixels (x’,y’)
– Known as “splatting”

Slide from Alyosha Efros, CMU

y

Inverse warping

’

y’
T-1(x,y)

f(x,y) g(x’,y’)x

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

Slide from Alyosha Efros, CMU

y

Inverse warping

’

T-1(x,y)
y’

f(x,y) g(x’,y’)x

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear…

Slide from Alyosha Efros, CMU >> help interp2
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Bilinear interpolation
Sampling at f(x,y):

Slide from Alyosha Efros, CMU

Recap: How to stitch together a 
panorama (a.k.a. mosaic)?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation (homography) between 
second image and first using corresponding pointssecond image and first using corresponding points.

– Transform the second image to overlap with the first.

– Blend the two together to create a mosaic.

– (If there are more images, repeat)

Source: Steve Seitz

Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to

Source: Steve Seitz

Image rectification

p’
p

p

Analysing patterns and shapes

What is the shape of the b/w floor pattern?

Automatically 
rectified floor

The floor (enlarged)

Slide from Antonio Criminisi
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Analysing patterns and shapes

From Martin Kemp The Science of Art
(manual reconstruction)
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Slide from Antonio Criminisi
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Analysing patterns and shapes

What is the (complicated)
shape of the floor pattern?

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano
Slide from Criminisi

Automatic
rectification

Analysing patterns and shapes

From Martin Kemp, The Science of Art
(manual reconstruction)

Slide from Criminisi

Changing camera center
Does it still work? synthetic PP

PP1

PP2

Source: Alyosha Efros

Recall: same camera center

real
camera

synthetic
camera

Can generate synthetic camera view
as long as it has the same center of projection.

Source: Alyosha Efros

…Or: Planar scene (or far away)

PP1

PP3

PP2

PP3 is a projection plane of both centers of projection, 
so we are OK!

This is how big aerial photographs are made

Source: Alyosha Efros
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RANSAC for estimating homography

RANSAC loop:

1.  Select four feature pairs (at random)

2.  Compute homography H (exact)

3.  Compute inliers where SSD(pi’, Hpi)< ε

4 Keep largest set of inliers4.  Keep largest set of inliers

5.  Re-compute least-squares H estimate on all of the inliers

Slide credit: Steve Seitz

Robust feature-based alignment

Source: L. Lazebnik

Robust feature-based alignment

• Extract features

Source: L. Lazebnik

Robust feature-based alignment

• Extract features

• Compute putative matches

Source: L. Lazebnik

Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

Source: L. Lazebnik

Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik

Summary: alignment & warping

• Write 2d transformations as matrix-vector 
multiplication (including translation when we use 
homogeneous coordinates)

• Perform image warping (forward, inverse)

• Fitting transformations: solve for unknown 
parameters given corresponding points  from 
two views (affine, projective (homography)).

• Mosaics: uses homography and image warping 
to merge views taken from same center of 
projection. 

Boundary 
extension

• Wide-Angle Memories of Close-
Up Scenes, Helene Intraub and 
Michael Richardson, Journal of 
Experimental Psychology: 
Learning, Memory, and 
Cognition, 1989, Vol. 15, No. 2, 
179 187179-187

Creating and Exploring a Large 
Photorealistic Virtual Space

Josef Sivic, Biliana Kaneva, Antonio Torralba, Shai Avidan and William T. 
Freeman, Internet Vision Workshop, CVPR 2008.
http://www.youtube.com/watch?v=E0rboU10rPo

Creating and Exploring a Large 
Photorealistic Virtual Space

Synthesized view from 
new camera

Current view, and 
desired view in green

Induced camera 
motion

Today

Mosaics wrap-up:

How to detect which features to match?

Mosaics wrap up:
How to warp one image to the other, given H?
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Detecting local invariant 
features

• Detection of interest points
– Harris corner detection

– Scale invariant blob detection: LoGScale invariant blob detection: LoG

• (Next time: description of local patches)

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor

],,[ )1()1(
11 dxx x

feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )2()2(
12 dxx x

Kristen Grauman

Local features: desired properties

• Repeatability
– The same feature can be found in several images 

despite geometric and photometric transformations 

• Saliency
Each feature has a distinctive description– Each feature has a distinctive description

• Compactness and efficiency
– Many fewer features than image pixels

• Locality
– A feature occupies a relatively small area of the 

image; robust to clutter and occlusion

Goal: interest operator repeatability

• We want to detect (at least some of) the 
same points in both images.

• Yet we have to be able to run the detection 
procedure independently per image.

No chance to find true matches!

Goal: descriptor distinctiveness

• We want to be able to reliably determine 
which point goes with which.

• Must provide some invariance to geometric 
and photometric differences between the two 
views.

?

Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptorfeature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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• What points would you choose?

Corners as distinctive interest points

We should easily recognize the point by 
looking through a small window

Shifting a window in any direction should give 
a large change in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point)
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neighborhood of a point).

Notation:

First, consider an axis-aligned corner:

What does this matrix reveal?
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First, consider an axis-aligned corner:

What does this matrix reveal?

This means dominant gradient directions align with 
x or y axis

Look for locations where both λ’s are large.

If either λ is close to 0, then this is not corner-like.

What if we have a corner that is not aligned with the 
image axes? 

What does this matrix reveal?

Since M is symmetric, we have TXXM 
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The eigenvalues of M reveal the amount of 
intensity change in the two principal orthogonal 
gradient directions in the window.
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Corner response function

“flat” region
1 and 2 are 
small;

“edge”:
1 >> 2

2 >> 1

“corner”:
1 and 2 are large,
1 ~ 2;

Harris corner detector

1) Compute M matrix for each image window to 
get their cornerness scores.

2) Find points whose surrounding window gave 
l (f th h ld)large corner response (f> threshold)

3) Take the points of local maxima, i.e., perform 
non-maximum suppression

Example of Harris application

Kristen Grauman

Compute corner response at every pixel.

Example of Harris application

Kristen Grauman

Example of Harris application

Kristen Grauman

Properties of the Harris corner detector

Rotation invariant? 

Scale invariant?

TXXM 
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Properties of the Harris corner detector

Rotation invariant? 

Scale invariant?

Yes

No

All points will be 
classified as edges

Corner !

Summary

• Image warping to create mosaic, given 
homography

• Interest point detection
H i d t t– Harris corner detector

– Next time: 
• Laplacian of Gaussian, automatic scale selection


