

Announcements

- Reminder: Pset 2 due tomorrow
- Reminder: Midterm exam is Wed March 9
- See practice exam handout from last time
- My office hours today: $12: 15-1: 15$

Last time

- RANSAC for robust fitting
- Lines, translation
- Image mosaics
- Fitting a 2D transformation
- Affine, Homography

Today

How to warp one image to the other, given H ?

How to detect which features to match?

Projective Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Projective transformations:

- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)
- ...but wait, why should this work at all?
- What about the 3D geometry of the scene?
- Why aren't we using it?

Image reprojection

Basic question

- How to relate two images from the same camera center? - how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another.

Solving for homographies

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{H p} \\
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Can set scale factor $i=1$. So, there are 8 unknowns.
Set up a system of linear equations:

$$
A h=b
$$

where vector of unknowns $\mathrm{h}=[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}]^{\top}$
Need at least 8 eqs, but the more the better..
Solve for h . If overconstrained, solve using least-squares:

$$
\min \|A h-b\|^{2}
$$

>> help lmdivide

Image warping

Given a coordinate transform and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y))$?

Slide from Alyosha Etros, CMU

Forward warping

Send each pixel $f(x, y)$ to its corresponding location

$$
\left(x^{\prime}, y^{\prime}\right)=T(x, y) \text { in the second image }
$$

Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime})

- Known as "splatting"

Slide from Alyosha Efros, CMU

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location

$$
(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right) \text { in the first image }
$$

Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- nearest neighbor, bilinear...

Side from Ayosha Efros, CMU
>> help interp2

Bilinear interpolation

Sampling at $f(x, y)$:

$f(x, y)=(1-a)(1-b) \quad f[i, j]$
$+a(1-b) \quad f[i+1, j]$
$+a b \quad f[i+1, j+1]$
$+(1-a) b \quad f[i, j+1]$

Slide from Alyosha Efros, CMU

Image warping with homographies

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation (homography) between second image and first using corresponding points.
- Transform the second image to overlap with the first.
- Blend the two together to create a mosaic.
- (If there are more images, repeat)

Recall: same camera center

Can generate synthetic camera view as long as it has the same center of projection.

RANSAC for estimating homography

RANSAC loop:

1. Select four feature pairs (at random)
2. Compute homography H (exact)
3. Compute inliers where $\operatorname{SSD}\left(p_{i}, \boldsymbol{H} p_{i}\right)<\varepsilon$
4. Keep largest set of inliers
5. Re-compute least-squares H estimate on all of the inliers

Robust feature-based alignment

- Extract features

Robust feature-based alignment

- Extract features
- Compute putative matches

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Summary: alignment \& warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Perform image warping (forward, inverse)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Mosaics: uses homography and image warping to merge views taken from same center of projection.

Creating and Exploring a Large
Photorealistic Virtual Space

Current view, and desired view in green

Synthesized view from new camera

Induced camera motion

Detecting local invariant features

- Detection of interest points
- Harris corner detection
- Scale invariant blob detection: LoG
- (Next time: description of local patches)

Local features: desired properties

- Repeatability
- The same feature can be found in several images despite geometric and photometric transformations
- Saliency
- Each feature has a distinctive description
- Compactness and efficiency
- Many fewer features than image pixels
- Locality
- A feature occupies a relatively small area of the image; robust to clutter and occlusion

Local features: main components

1) Detection: Identify the interest points
2) Description:Extract vector feature descriptor surrounding each interest point.
3) Matching: Determine correspondence between descriptors in two views

Goal: interest operator repeatability

- We want to detect (at least some of) the same points in both images.

No chance to find true matches!

- Yet we have to be able to run the detection procedure independently per image.

Goal: descriptor distinctiveness

- We want to be able to reliably determine which point goes with which.

- Must provide some invariance to geometric and photometric differences between the two views.

Local features: main components

1) Detection: Identify the interest points
2) Description:Extract vector feature descriptor
surrounding each interest point.
3) Matching: Determine
correspondence between
descriptors in two views

- What points would you choose?

Corners as distinctive interest points
We should easily recognize the point by looking through a small window
Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

What does this matrix reveal?

First, consider an axis-aligned corner:

What does this matrix reveal?
First, consider an axis-aligned corner:

$$
M=\sum\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

This means dominant gradient directions align with x or y axis
Look for locations where both λ 's are large.
If either λ is close to 0 , then this is not corner-like.
What if we have a corner that is not aligned with the image axes?

What does this matrix reveal?
Since M is symmetric, we have $M=X\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] X^{T}$

$M x_{i}=\lambda_{i} x_{i}$

The eigenvalues of M reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.

Properties of the Harris corner detector
Rotation invariant? Yes $\quad M=X\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] X^{T}$
Scale invariant?

Properties of the Harris corner detector
Rotation invariant? Yes

Scale invariant? No

All points will be classified as edges

Summary

- Image warping to create mosaic, given homography
- Interest point detection
- Harris corner detector
- Next time:
- Laplacian of Gaussian, automatic scale selection

