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Window-based models for
generic object detection

Monday, April 11

Kristen Grauman

UT-Austin

Previously

• Instance recognition
– Local features: detection and description
– Local feature matching, scalable indexing
– Spatial verification

• Intro to generic object recognition
• Supervised classification

– Main idea
– Skin color detection example

Last time: supervised classification

Feature value x

Optimal classifier will 
minimize total risk. 

At decision boundary, 
either choice of label 
yields same expected 
loss.

So, best decision boundary is at point x where

To classify a new point, choose class with lowest expected 
loss; i.e., choose “four” if

9)(4) |4 is P(class4)(9 )|9 is class(  LLP xx

)49()|9()94()|4(  LPLP xx

P(4 | x) P(9 | x)
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Last time: 
Example: skin color classification

• We can represent a class-conditional density using a 
histogram (a “non-parametric” distribution)

Feature x = Hue 

Feature x = Hue 

P(x|skin)

P(x|not skin)

Kristen Grauman

• We can represent a class-conditional density using a 
histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)
Now we get a new image, 
and want to label each pixel 
as skin or non-skin. 

)()|(  )|( skinPskinxPxskinP 

Last time: 
Example: skin color classification

Kristen Grauman

Now for every pixel in a new image, we can 
estimate probability that it is generated by skin.

Classify pixels based on these probabilities

Brighter pixels 
higher probability 
of being skin

Last time: 
Example: skin color classification

Kristen Grauman
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Today

• Window-based generic object detection
– basic pipeline

– boosting classifiers

– face detection as case study

Generic category recognition:
basic framework

• Build/train object model

– Choose a representation

– Learn or fit parameters of model / classifier 

• Generate candidates in new image

• Score the candidates

Generic category recognition:
representation choice

Window‐based Part‐based

Simple holistic descriptions of image content

 grayscale / color histogram

 vector of pixel intensities

Window-based models
Building an object model

Kristen Grauman

Window-based models
Building an object model

• Pixel-based representations sensitive to small shifts

• Color or grayscale-based appearance description can be 
sensitive to illumination and intra-class appearance 
variation

Kristen Grauman

Window-based models
Building an object model

• Consider edges, contours, and (oriented) intensity 
gradients

Kristen Grauman
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Window-based models
Building an object model

• Consider edges, contours, and (oriented) intensity 
gradients

• Summarize local distribution of gradients with histogram
 Locally orderless: offers invariance to small shifts and rotations
 Contrast-normalization: try to correct for variable illumination

Kristen Grauman

Window-based models
Building an object model

Car/non-car 
Classifier

Yes, car.No, not a car.

Given the representation, train a binary classifier

Kristen Grauman

Discriminative classifier construction

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 
2001,…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,…

Generic category recognition:
basic framework

• Build/train object model

– Choose a representation

– Learn or fit parameters of model / classifier 

• Generate candidates in new image

• Score the candidates

Window-based models
Generating and scoring candidates

Car/non-car 
Classifier

Kristen Grauman

Window-based object detection: recap

Car/non-car 
Classifier

Feature 
extraction

Training examples

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Kristen Grauman
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Discriminative classifier construction

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 
2001,…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,…

Boosting  intuition

Weak 
Classifier 1

Slide credit: Paul Viola

Boosting  illustration

Weights
Increased

Boosting  illustration

Weak 
Classifier 2

Boosting  illustration

Weights
Increased

Boosting  illustration

Weak 
Classifier 3
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Boosting  illustration

Final classifier is 
a combination of weak 
classifiers

Boosting: training

• Initially, weight each training example equally

• In each boosting round:
– Find the weak learner that achieves the lowest weighted training error

– Raise weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak 

learners (weight of each learner is directly proportional to 

its accuracy)

• Exact formulas for re-weighting and combining weak 

learners depend on the particular boosting scheme (e.g., 

AdaBoost)
Slide credit: Lana Lazebnik

Boosting: pros and cons

• Advantages of boosting
• Integrates classification with feature selection

• Complexity of training is linear in the number of training 
examples

• Flexibility in the choice of weak learners, boosting scheme

• Testing is fast

• Easy to implement

• Disadvantages
• Needs many training examples

• Often found not to work as well as an alternative 
discriminative classifier, support vector machine (SVM)

– especially for many-class problems

Slide credit: Lana Lazebnik

Viola-Jones face detector

Main idea:

– Represent local texture with efficiently computable 
“rectangular” features within window of interest

– Select discriminative features to be weak classifiers

– Use boosted combination of them as final classifier

– Form a cascade of such classifiers, rejecting clear 
negatives quickly

Viola-Jones face detector

Kristen Grauman

Viola-Jones detector: features

Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time.

“Rectangular” filters

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

Integral image

Kristen Grauman
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Computing sum within a rectangle

• Let A,B,C,D be the 
values of the integral 
image at the corners of a 
rectangle

• Then the sum of original 
image values within the 
rectangle can be 
computed as:

sum = A – B – C + D

• Only 3 additions are 
required for any size of 
rectangle!

D B

C A

Lana Lazebnik

Viola-Jones detector: features

Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time

Avoid scaling images 
scale features directly 
for same cost

“Rectangular” filters

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

Integral image

Kristen Grauman

Considering all 
possible filter 
parameters: position, 
scale, and type: 

180,000+ possible 
features associated 
with each 24 x 24 
window

Which subset of these features should we 
use to determine if a window has a face?

Use AdaBoost both to select the informative 
features and to form the classifier

Viola-Jones detector: features

Kristen Grauman

Viola-Jones detector: AdaBoost
• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Outputs of a possible 
rectangle feature on 
faces and non-faces.

…

Resulting weak classifier:

For next round, reweight the 
examples according to errors, 
choose another filter/threshold 
combo.

Kristen Grauman
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AdaBoost Algorithm
Start with 
uniform weights 
on training 
examples

Evaluate 
weighted error 
for each feature, 
pick best.

Re-weight the examples:
Incorrectly classified -> more weight
Correctly classified -> less weight

Final classifier is combination of the 
weak ones, weighted according to 
error they had.

Freund & Schapire 1995

{x1,…xn}
For T rounds
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First two features 
selected

Viola-Jones Face Detector: Results
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• Even if the filters are fast to compute, each new 
image has a lot of possible windows to search.

• How to make the detection more efficient?

Cascading classifiers for detection

• Form a cascade with low false negative rates early on

• Apply less accurate but faster classifiers first to immediately 
discard windows that clearly appear to be negative

Kristen Grauman

Viola-Jones detector: summary

Train with 5K positives, 350M negatives
Real‐time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV: 
http://www.intel.com/technology/computing/opencv/]

Faces

Non-faces

Train cascade of 
classifiers with 

AdaBoost

Selected features, 
thresholds, and weights

New image

Kristen Grauman

Viola-Jones detector: summary

• A seminal approach to real-time object detection 

• Training is slow, but detection is very fast

• Key ideas

 Integral images for fast feature evaluation

 Boosting for feature selection

 Attentional cascade of classifiers for fast rejection of non-
face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
CVPR 2001. 

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. 
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Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results
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Detecting profile faces?

Can we use the same detector?
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Paul Viola, ICCV tutorial

Viola-Jones Face Detector: Results

Everingham, M., Sivic, J. and Zisserman, A.
"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example using Viola‐Jones detector

Frontal faces detected and then tracked,  character 
names inferred with alignment of script and subtitles.

Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/

Slide credit: Lana Lazebnik
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Consumer application: iPhoto 2009

Things iPhoto thinks are faces

Slide credit: Lana Lazebnik

Consumer application: iPhoto 2009

Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Slide credit: Lana Lazebnik

What other categories are amenable to window-
based representation?
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Pedestrian detection
• Detecting upright, walking humans also possible using sliding 

window’s appearance/texture; e.g.,

SVM with Haar wavelets 
[Papageorgiou & Poggio, IJCV 
2000]

Space-time rectangle 
features [Viola, Jones & 
Snow, ICCV 2003]

SVM with HoGs [Dalal & 
Triggs, CVPR 2005]

Kristen Grauman
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Window-based detection: strengths

• Sliding window detection and global appearance 
descriptors:
 Simple detection protocol to implement
 Good feature choices critical
 Past successes for certain classes

Kristen Grauman
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Window-based detection: Limitations

• High computational complexity 
 For example: 250,000 locations x 30 orientations x 4 scales = 

30,000,000 evaluations!
 If training binary detectors independently, means cost increases 

linearly with number of classes

• With so many windows, false positive rate better be low

Kristen Grauman
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Limitations (continued)

• Not all objects are “box” shaped

Kristen Grauman
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Limitations (continued)

• Non-rigid, deformable objects not captured well with 
representations assuming a fixed 2d structure; or must 
assume fixed viewpoint

• Objects with less-regular textures not captured well 
with holistic appearance-based descriptions

Kristen Grauman
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Limitations (continued)

• If considering windows in isolation, context is lost

Figure credit: Derek Hoiem

Sliding window Detector’s view

Kristen Grauman
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Limitations (continued)

• In practice, often entails large, cropped training set 
(expensive) 

• Requiring good match to a global appearance description 
can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni Kristen Grauman

Summary

• Basic pipeline for window-based detection

– Model/representation/classifier choice

– Sliding window and classifier scoring

• Boosting classifiers: general idea

• Viola-Jones face detector

– Exemplar of basic paradigm

– Plus key ideas: rectangular features, Adaboost for feature 
selection, cascade

• Pros and cons of window-based detection
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Table 1: The AdaBoost algorithm for classifier learn-
ing. Each round of boosting selects one feature from the
180,000 potential features.

number of features are retained (perhaps a few hundred or
thousand).

3.2. Learning Results
While details on the training and performance of the final
system are presented in Section 5, several simple results
merit discussion. Initial experiments demonstrated that a
frontal face classifier constructed from 200 features yields
a detection rate of 95% with a false positive rate of 1 in
14084. These results are compelling, but not sufficient for
many real-world tasks. In terms of computation, this clas-
sifier is probably faster than any other published system,
requiring 0.7 seconds to scan an 384 by 288 pixel image.
Unfortunately, the most straightforward technique for im-
proving detection performance, adding features to the clas-
sifier, directly increases computation time.

For the task of face detection, the initial rectangle fea-
tures selected by AdaBoost are meaningful and easily inter-
preted. The first feature selected seems to focus on the prop-
erty that the region of the eyes is often darker than the region

Figure 3: The first and second features selected by Ad-
aBoost. The two features are shown in the top row and then
overlayed on a typical training face in the bottom row. The
first feature measures the difference in intensity between the
region of the eyes and a region across the upper cheeks. The
feature capitalizes on the observation that the eye region is
often darker than the cheeks. The second feature compares
the intensities in the eye regions to the intensity across the
bridge of the nose.

of the nose and cheeks (see Figure 3). This feature is rel-
atively large in comparison with the detection sub-window,
and should be somewhat insensitive to size and location of
the face. The second feature selected relies on the property
that the eyes are darker than the bridge of the nose.

4. The Attentional Cascade
This section describes an algorithm for constructing a cas-
cade of classifiers which achieves increased detection per-
formance while radically reducing computation time. The
key insight is that smaller, and therefore more efficient,
boosted classifiers can be constructed which reject many of
the negative sub-windows while detecting almost all posi-
tive instances (i.e. the threshold of a boosted classifier can
be adjusted so that the false negative rate is close to zero).
Simpler classifiers are used to reject the majority of sub-
windows before more complex classifiers are called upon
to achieve low false positive rates.

The overall form of the detection process is that of a de-
generate decision tree, what we call a “cascade” (see Fig-
ure 4). A positive result from the first classifier triggers the
evaluation of a second classifier which has also been ad-
justed to achieve very high detection rates. A positive result
from the second classifier triggers a third classifier, and so
on. A negative outcome at any point leads to the immediate
rejection of the sub-window.

Stages in the cascade are constructed by training clas-
sifiers using AdaBoost and then adjusting the threshold to
minimize false negatives. Note that the default AdaBoost
threshold is designed to yield a low error rate on the train-
ing data. In general a lower threshold yields higher detec-

4
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