

Part-based and local feature models for generic object recognition Wed, April 20 Kristen Grauman UT-Austin

## Previously

- Discriminative classifiers
  - Boosting
  - Nearest neighbors
  - Support vector machines
- Useful for object recognition when combined with "window-based" or holistic appearance descriptors



Kristen Graur

• When might this not be ideal?

# Part-based and local feature models for recognition



#### Main idea:

Rather than a representation based on holistic appearance, decompose the image into:

- · local parts or patches, and
- their relative spatial relationships











| True classes 🤿 | faces | buildings | trees | cars | phones | bikes | book |
|----------------|-------|-----------|-------|------|--------|-------|------|
| faces          | 76    | 4         | 2     | 3    | 4      | 4     | 13   |
| buildings      | 2     | 44        | 5     | 0    | 5      | 1     | 3    |
| trees          | 3     | 2         | 80    | 0    | 0      | 5     | 0    |
| cars           | 4     | 1         | 0     | 75   | 3      | 1     | 4    |
| phones         | 9     | 15        | 1     | 16   | 70     | 14    | 11   |
| bikes          | 2     | 15        | 12    | 0    | 8      | 73    | 0    |
| books          | 4     | 19        | 0     | 6    | 7      | 2     | 69   |





















## Highlights of the pyramid match

- Linear time complexity
- · Formal bounds on expected error
- Mercer kernel
- Data-driven partitions allow accurate matches even in high-dim. feature spaces
- Strong performance on benchmark object recognition datasets

Kristen Gra



























### Implicit shape models: Training

- 1. Build vocabulary of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest word
- 3. For each word, store all positions it was found, relative to object center











































# Summary: part-based and local feature models for generic object recognition

- Histograms of visual words to capture global or local layout in the bag-of-words framework
  - Pyramid match kernels
  - Powerful in practice for image recognition
- Part-based models encode category's part appearance together with 2d layout and allow detection within cluttered image
  - "implicit shape model": shape based on layout of all parts relative to a reference part; Generalized Hough for detection
  - "constellation model": explicitly model mutual spatial layout between all pairs of parts; exhaustive search for best fit of features to parts



recognition by alignment

Categories: Holistic appearance models (and sliding window detection)

Categories: Local feature and part-based models

# Coming up

· Video processing: motion, tracking, activity