

Normalized Euclidean distance

$$D(h_1, h_2) = \sqrt{\sum_{i=1}^{d} \frac{\left(h_1(i) - h_2(i)\right)^2}{\sigma_i^2}}$$

Normalize according to variance in each dimension

What does this do for our distance computation?

Kristen Graumar

Leave-one-out cross validation

- Cycle through data points, treating each one as the "test" case in turn, and training with the remaining labeled examples.
- · Report results over all such test cases

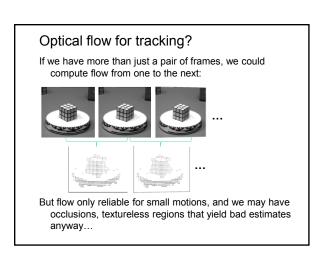
CS 376 Lecture 26 Tracking

Outline

- · Today: Tracking
 - Tracking as inference
 - Linear models of dynamics
 - Kalman filters
 - General challenges in tracking

Tracking: some applications Body pose tracking, activity recognition Medical apps Censusing a bat population Censusing a bat population Video-based interfaces Surveillance Kristen Grauman

Why is tracking challenging?



Motion estimation techniques

- Direct methods
 - Directly recover image motion at each pixel from spatio-temporal image brightness variations
 - Dense motion fields, but sensitive to appearance variations
 - Suitable for video and when image motion is small

· Feature-based methods

- Extract visual features (corners, textured areas) and track them over multiple frames
- · Sparse motion fields, but more robust tracking
- Suitable when image motion is large (10s of pixels)

Example: A Camera Mouse

Video interface: use feature tracking as mouse replacement

- · User clicks on the feature to be tracked
- · Take the 15x15 pixel square of the feature
- In the next image do a search to find the 15x15 region with the highest correlation
- · Move the mouse pointer accordingly
- Repeat in the background every 1/30th of a second

James Gips and Margrit Betke http://www.bc.edu/schools/csom/eagleeyes/

Kristen Grauman

Example: A Camera Mouse

Specialized software for communication, games

James Gips and Margrit Betke http://www.bc.edu/schools/csom/eagleeyes/

Kristen Grauman

A Camera Mouse

Specialized software for communication, games

James Gips and Margrit Betke http://www.bc.edu/schools/csom/eagleeyes/

Kristen Grauman

Feature-based matching for motion

• For a discrete matching search, what are the tradeoffs of the chosen search window size?

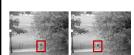
- Which patches to track?
 - Select interest points e.g. corners
- · Where should the search window be placed?
 - · Near match at previous frame
 - · More generally, taking into account the expected dynamics of the object

Kristen Grauman

Detection vs. tracking

Kristen Grauman

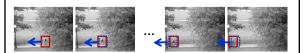
Detection vs. tracking



Detection: We detect the object independently in each frame and can record its position over time, e.g., based on blob's centroid or detection window coordinates

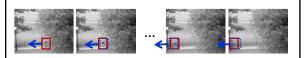
Kristen Grauman

Detection vs. tracking



Tracking with dynamics: We use image measurements to estimate position of object, but also incorporate position predicted by dynamics, i.e., our expectation of object's motion pattern.

Detection vs. tracking



Tracking with dynamics: We use image measurements to estimate position of object, but also incorporate position predicted by dynamics, i.e., our expectation of object's motion pattern.

Tracking with dynamics

- · Use model of expected motion to predict where objects will occur in next frame, even before seeing the image.
- · Intent:
 - Do less work looking for the object, restrict the search.
 - Get improved estimates since measurement noise is tempered by smoothness, dynamics priors.
- · Assumption: continuous motion patterns:
 - Camera is not moving instantly to new viewpoint
 - Objects do not disappear and reappear in different places in the scene
 - Gradual change in pose between camera and scene

Tracking as inference

- The hidden state consists of the true parameters we care about, denoted X.
- The *measurement* is our noisy observation that results from the underlying state, denoted Y.
- At each time step, state changes (from X_{t-1} to X_t) and we get a new observation Y_t.

Kristen Grauma

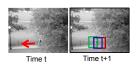
State vs. observation

Hidden state: parameters of interest Measurement: what we get to directly observe

Tracking as inference

- The *hidden state* consists of the true parameters we care about, denoted X.
- The *measurement* is our noisy observation that results from the underlying state, denoted Y.
- At each time step, state changes (from X_{t-1} to X_t) and we get a new observation Y_t.
- Our goal: recover most likely state X_t given
 - All observations seen so far.
 - Knowledge about dynamics of state transitions.

Tracking as inference: intuition

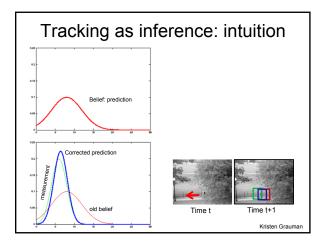


Belief

Measurement

Corrected prediction

Kristen Grauman



Independence assumptions

· Only immediate past state influences current state

$$P(X_{t}|X_{0},...,X_{t-1}) = P(X_{t}|X_{t-1})$$

dynamics model

· Measurement at time t depends on current state

$$P(Y_t|X_0, Y_0, \dots, X_{t-1}, Y_{t-1}, X_t) = P(Y_t|X_t)$$

observation model

Kristen Grauman

Tracking as inference

- · Prediction:
 - Given the measurements we have seen up to this point, what state should we predict?

$$P(X_t|y_0,\ldots,y_{t-1})$$

- · Correction:
 - Now given the current measurement, what
 state should we predict?

state should we predict?
$$P(X_t | y_0, ..., y_t)$$

Kristen Grauman

Questions

- How to represent the known dynamics that govern the changes in the states?
- How to represent relationship between state and measurements, plus our uncertainty in the measurements?
- · How to compute each cycle of updates?

Representation: We'll consider the class of *linear* dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.

Kristen Grauman

Notation reminder

$$\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$$

- Random variable with Gaussian probability distribution that has the mean vector μ and covariance matrix Σ.
- \mathbf{x} and $\mathbf{\mu}$ are d-dimensional, $\mathbf{\Sigma}$ is $d \times d$.

If x is 1-d, we just have one Σ parameter - \rightarrow the variance: σ^2

Kristen Grauman

Linear dynamic model

- Describe the a priori knowledge about
 - System dynamics model: represents evolution of state over time.

$$\sum_{\mathsf{n}\,\mathsf{x}\,\mathsf{1}} N(\mathbf{D}\mathbf{x}_{t-1}; \mathbf{\Sigma}_d)$$

 Measurement model: at every time step we get a noisy measurement of the state.

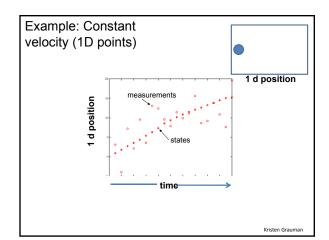
Kristen Grauman

Example: randomly drifting points

 $\mathbf{x}_{t} \sim N(\mathbf{D}\mathbf{x}_{t-1}; \mathbf{\Sigma}_{d})$

- Consider a stationary object, with state as position
- Position is constant, only motion due to random noise term.
- State evolution is described by identity matrix **D=I**

cic nist gov lipman sciviz images trande http://www.granch.net/synergetics/imag 3-ine



Example: Constant velocity (1D points)

 $\mathbf{x}_{t} \sim N(\mathbf{D}\mathbf{x}_{t-1}; \boldsymbol{\Sigma}_{d})$ $\mathbf{y}_{t} \sim N(\mathbf{M}\mathbf{x}_{t}; \boldsymbol{\Sigma}_{m})$

• State vector: position p and velocity v

$$x_t = \begin{bmatrix} p_t \\ v_t \end{bmatrix}$$
 $p_t =$

$$x_{t} = D_{t}x_{t-1} + noise =$$

· Measurement is position only

$$y_t = Mx_t + noise =$$

Kristen Grauman

Questions

- How to represent the known dynamics that govern the changes in the states?
- How to represent relationship between state and measurements, plus our uncertainty in the measurements?
- · How to compute each cycle of updates?

Representation: We'll consider the class of *linear* dynamic models, with associated Gaussian pdfs.

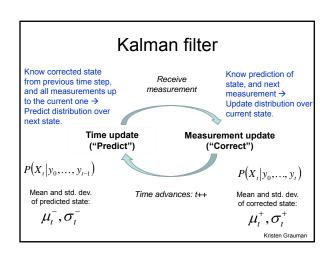
Updates: via the Kalman filter.

Kristen Grauman

The Kalman filter

- Method for tracking linear dynamical models in Gaussian noise
- The predicted/corrected state distributions are Gaussian
 - Only need to maintain the mean and covariance
 - The calculations are easy

Kristen Graumar



1D Kalman filter: Prediction

 Have linear dynamic model defining predicted state evolution, with noise

$$X_t \sim N(dx_{t-1}, \sigma_d^2)$$

· Want to estimate predicted distribution for next state

$$P(X_t|y_0,...,y_{t-1}) = N(\mu_t^-,(\sigma_t^-)^2)$$

• Update the mean:

$$\mu_t^- = d\mu_{t-1}^+$$

• Update the variance:

$$(\sigma_t^-)^2 = \sigma_d^2 + (d\sigma_{t-1}^+)^2$$

Lana Lazebnik

1D Kalman filter: Correction

• Have linear model defining the mapping of state to measurements:

$$Y_t \sim N(mx_t, \sigma_m^2)$$

• Want to estimate corrected distribution given latest meas.: $P\!\left(X_t\big|y_0,\ldots,y_t\right) = N\!\left(\mu_t^+,(\sigma_t^+)^2\right)$

• Update the mean: $\mu_t^+ = \frac{\mu_t^- \sigma_m^2 + m y_t (\sigma_t^-)^2}{\sigma_m^2 + m^2 (\sigma_t^-)^2}$

• Update the variance:

nce:
$$(\sigma_t^+)^2 = \frac{\sigma_m^2 (\sigma_t^-)^2}{\sigma_m^2 + m^2 (\sigma_t^-)^2}$$

Prediction vs. correction

$$\mu_t^+ = \frac{\mu_t^- \sigma_m^2 + m y_t (\sigma_t^-)^2}{\sigma_m^2 + m^2 (\sigma_t^-)^2} \quad (\sigma_t^+)^2 = \frac{\sigma_m^2 (\sigma_t^-)^2}{\sigma_m^2 + m^2 (\sigma_t^-)^2}$$

• What if there is no prediction uncertainty $(\sigma_t^- = 0)$?

$$\mu_t^+ = \mu_t^- \qquad (\sigma_t^+)^2 = 0$$

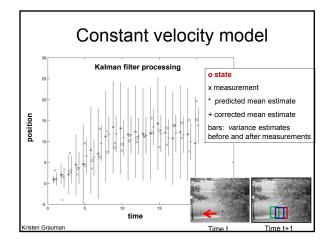
The measurement is ignored!

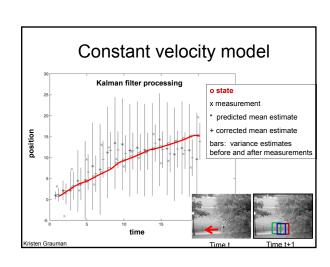
• What if there is no measurement uncertainty $(\sigma_m = 0)$?

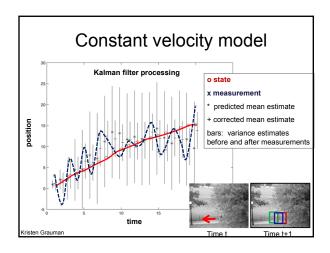
$$\mu_t^+ = \frac{y_t}{m} \qquad (\sigma_t^+)^2 = 0$$

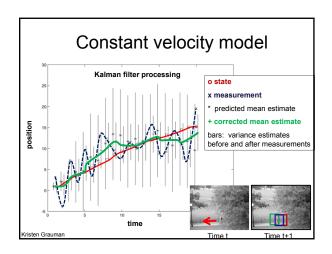
The prediction is ignored!

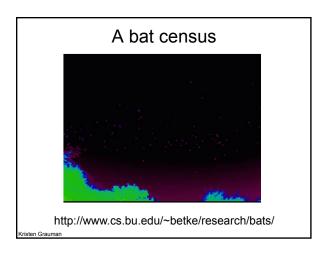
Lana Lazebn











Video synopsis http://www.vision.huji.ac.il/video-synopsis/ CAMERA IN STUTTGART ARRORT (SEE 24 HOURS IN 20 SECONDS!) Synopsis with Lers Collisions Synops

Tracking: issues Initialization Often done manually Background subtraction, detection can also be used Data association, multiple tracked objects Occlusions, clutter

Tracking: issues

- Initialization
 - Often done manually
 - Background subtraction, detection can also be used
- · Data association, multiple tracked objects
 - Occlusions, clutter
 - Which measurements go with which tracks?

Tracking: issues

- Initialization
 - Often done manually
 - Background subtraction, detection can also be used
- · Data association, multiple tracked objects
 - Occlusions, clutter
- Deformable and articulated objects

Recall: tracking via deformable contours

- 1. Use final contour/model extracted at frame t as an initial solution for frame t+1
- 2. Evolve initial contour to fit exact object boundary at frame *t*+1
- 3. Repeat, initializing with most recent frame.

<u>Visual Dynamics Group</u>, Dept. Engineering Science, University of Oxford.

Tracking: issues

- Initialization
 - Often done manually
 - Background subtraction, detection can also be used
- · Data association, multiple tracked objects
 - Occlusions, clutter
- · Deformable and articulated objects
- Constructing accurate models of dynamics
 - E.g., Fitting parameters for a linear dynamics model
- Drift
 - Accumulation of errors over time

Drift

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their

Summary

- · Tracking as inference
 - Goal: estimate posterior of object position given measurement
- · Linear models of dynamics
 - Represent state evolution and measurement models
- · Kalman filters
 - Recursive prediction/correction updates to refine measurement
- · General tracking challenges