Announcements

- **Office hours** Mon-Thurs 5-6 pm
 - Mon: Yong Jae, PAI 5.33
 - Tues/Thurs: Shalini, PAI 5.33
 - Wed: Me, ACES 3.446

- cv-spring2011@cs.utexas.edu for assignment questions outside of office hours

- **Pset 0** due Friday Jan 28. Drop box in PAI 5.38. Attach cover page with name and CS 376

Plan for today

- Image noise
- Linear filters
 - Examples: smoothing filters
- Convolution / correlation

Image Formation

- Digital camera

A digital camera replaces film with a sensor array
- Each cell in the array is light-sensitive diode that converts photons to electrons
Digital images

Sample the 2D space on a regular grid
Quantize each sample (round to nearest integer)
Image thus represented as a matrix of integer values.

Digital color images

Color images, RGB color space

Images in Matlab

- Images represented as a matrix
- Suppose we have a N x M RGB image called “im”
 - im(1, 1) = top-left pixel value in R-channel
 - im(y, x, b) = y pixels down, x pixels to right in the bth channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

Image filtering

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a “filter” or mask saying how to combine values from neighbors.

- Uses of filtering:
 - Enhance an image (denoise, resize, etc)
 - Extract information (texture, edges, etc)
 - Detect patterns (template matching)
Motivation: noise reduction
• Even multiple images of the same static scene will not be identical.

Common types of noise
- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Original
Salt and pepper noise
Impulse noise
Gaussian noise
Source: S. Seitz

Gaussian noise

First attempt at a solution
• Let’s replace each pixel with an average of all the values in its neighborhood
• Assumptions:
 • Expect pixels to be like their neighbors
 • Expect noise processes to be independent from pixel to pixel

First attempt at a solution
• Let’s replace each pixel with an average of all the values in its neighborhood
• Moving average in 1D:

Source: S. Marschner
Weighted Moving Average

Can add weights to our moving average

Weights \[[1, 1, 1, 1, 1] / 5 \]

Source: S. Marschner

Weighted Moving Average

Non-uniform weights \[[1, 4, 6, 4, 1] / 16 \]

Source: S. Marschner

Moving Average In 2D

\[
\begin{array}{c|cccc}
F[x, y] & & & & \\
\hline
& & & & \\
G[x, y] & & & & \\
\end{array}
\]

Source: S. Seitz

Moving Average In 2D

\[
\begin{array}{c|cccc}
F[x, y] & & & & \\
\hline
& & & & \\
G[x, y] & & & & \\
\end{array}
\]

Source: S. Seitz
Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:
\[G[i, j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i + u, j + v] \]

Loop over all pixels in neighborhood around image pixel \(F[i, j] \)

Now generalize to allow different weights depending on neighboring pixel’s relative position:
\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]

This is called cross-correlation, denoted \(G = H \otimes F \)

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter “kernel” or “mask” \(H[u, v] \) is the prescription for the weights in the linear combination.

Averaging filter

• What values belong in the kernel \(H \) for the moving average example?

\[G = H \otimes F \]

Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3?
Boundary issues
What is the size of the output?
• MATLAB: output size / “shape” options
 • shape = ‘full’: output size is sum of sizes of f and g
 • shape = ‘same’: output size is same as f
 • shape = ‘valid’: output size is difference of sizes of f and g

Boundary issues
What about near the edge?
• the filter window falls off the edge of the image
• need to extrapolate
• methods:
 – clip filter (black): imfilter(f, g, 0)
 – wrap around: imfilter(f, g, ‘circular’)
 – copy edge: imfilter(f, g, ‘replicate’)
 – reflect across edge: imfilter(f, g, ‘symmetric’)

Gaussian filter
• What if we want nearest neighboring pixels to have
 the most influence on the output?
 This kernel is an approximation of a 2d Gaussian function:
 \(h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \)
 \(F[x, y] \)
 \(H[u, v] \)
• Removes high-frequency components from the
 image (“low-pass filter”).

Gaussian filters
• What parameters matter here?
• Size of kernel or mask
 – Note, Gaussian function has infinite support, but discrete
 filters use finite kernels
 \(\sigma = 5 \) with
 10 x 10 kernel
 \(\sigma = 5 \) with
 30 x 30 kernel
Gaussian filters

- What parameters matter here?
- **Variance** of Gaussian: determines extent of smoothing

\[\sigma = 2 \text{ with } 30 \times 30 \text{ kernel} \]

\[\sigma = 5 \text{ with } 30 \times 30 \text{ kernel} \]

Matlab

\[>> \text{hsize} = 10; \]
\[>> \text{sigma} = 5; \]
\[>> \text{h} = \text{fspecial('gaussian', hsize, sigma);} \]

\[>> \text{mesh}(\text{h}); \]
\[>> \text{imagesc}(\text{h}); \]

\[>> \text{outim} = \text{imfilter(\text{im}, \text{h});} \text{ % correlation} \]
\[>> \text{imshow(outim);} \]

Smoothing with a Gaussian

Parameter \(\sigma \) is the “scale” / “width” / “spread” of the Gaussian kernel, and controls the amount of smoothing.

\[\text{for sigma} = 1:3:10 \]
\[\quad \text{h} = \text{fspecial('gaussian', fsize, sigma);} \]
\[\quad \text{out} = \text{imfilter(\text{im}, \text{h});} \]
\[\quad \text{imshow(out);} \]
\[\quad \text{pause;} \]
\[\text{end} \]

Properties of smoothing filters

- **Smoothing**
 - Values positive
 - Sum to 1 \(\rightarrow \) constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove “high-frequency” components; “low-pass” filter

Filtering an impulse signal

What is the result of filtering the impulse signal (image) \(F \) with the arbitrary kernel \(H \)?

\[F[x, y] \]

\[H[u, v] \]

\[G[x, y] \]

Convolution

- **Convolution**:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u, j - v] \]

\[G = H \ast F \]

Notation for convolution operator
Convolution vs. correlation

Convolution

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i - u - j - v]
\]

\[
G = H \ast F
\]

Cross-correlation

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u + j + v]
\]

\[
G = H \otimes F
\]

For a Gaussian or box filter, how will the outputs differ? If the input is an impulse signal, how will the outputs differ?

Practice with linear filters

Original

0 0 0
0 1 0
0 0 0

Predict the outputs using correlation filtering

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

Original

0 0 0
0 1 0
0 0 0

Filtered (no change)

0 0 0
0 0 0
0 0 0

Original

0 0 0
0 0 1
0 0 0

Shifted left by 1 pixel with correlation

0 0 0
0 0 1
0 0 0

Source: D. Lowe
Practice with linear filters

Original

Blur (with a box filter)

Original

Blur (with a box filter)

Original

Blur (with a box filter)

Original

Sharpening filter: accentuates differences with local average

Filtering examples: sharpening

before

after

Properties of convolution

• **Shift invariant:**
 - Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

• **Superposition:**
 - \(h \ast (f_1 + f_2) = (h \ast f_1) + (h \ast f_2) \)
Properties of convolution

• Commutative:
 \(f * g = g * f \)

• Associative
 \((f * g) * h = f * (g * h)\)

• Distributes over addition
 \(f * (g + h) = (f * g) + (f * h) \)

• Scalars factor out
 \(kf * g = f * kg = k(f * g) \)

• Identity:
 unit impulse \(e = [..., 0, 0, 1, 0, 0, ...] \). \(f * e = f \)

Separability

• In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows
 - Convolve all columns

Effect of smoothing filters

5x5

Additive Gaussian noise
Salt and pepper noise

Median filter

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

Median filter

Plots of a row of the image
Matlab: output \(im = medfilt2(im, [h w]) \):

Source: M. Hebert
Median filter

- Median filter is edge preserving

<table>
<thead>
<tr>
<th>INPUT</th>
<th>MEDIAN</th>
<th>MEAN</th>
</tr>
</thead>
</table>

Filtering application: Hybrid Images

Aude Oliva, Antonio Torralba, Philippe G. Schyns, SIGGRAPH 2006

Application: Hybrid Images

Gaussian Filter

Laplacian Filter

Summary

- Image “noise”
- Linear filters and convolution useful for
 - Enhancing images (smoothing, removing noise)
 - Box filter
 - Gaussian filter
 - Impact of scale / width of smoothing filter
 - Detecting features (next time)
- Separable filters more efficient
- Median filter: a non-linear filter, edge-preserving
Coming up

• **Wednesday:**
 – Filtering part 2: filtering for features

• **Friday:**
 – Pset 0 is due via turnin, 11:59 PM