

Previously

- Filters allow local image neighborhood to influence our description and features
 - Smoothing to reduce noise
 - Derivatives to locate contrast, gradient
- Seam carving application:
 - use image gradients to measure "interestingness" or "energy"
 - remove 8-connected seams so as to preserve image's energy.

- Edge detection and matching
 - process the image gradient to find curves/contours
 comparing contours
- Binary image analysis – blobs and regions

Edge detection Goal: map image from 2d array of pixels to a set of curves or line segments or contours. Why?

• Main idea: look for strong gradients, post-process

Gradients -> edges

Primary edge detection steps:

- 1. Smoothing: suppress noise
- 2. Edge enhancement: filter for contrast
- 3. Edge localization

Determine which local maxima from filter output are actually edges vs. noise

Threshold, Thin

- Choose a threshold value t
- · Set any pixels less than t to zero (off)
- Set any pixels greater than or equal to t to one (on)

Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Source: D. Lowe, L. Fei-Fe

- MATLAB: edge(image, `canny');
- >>help edge

<section-header><image><image>

Recap: Canny edge detector Filter image with derivative of Gaussian Find magnitude and orientation of gradient Non-maximum suppression: Thin wide "ridges" down to single pixel width Linking and thresholding (hysteresis): Define two thresholds: low and high Use the high threshold to start edge curves and the low threshold to continue them

Source: D. Lowe, L. Fei-Fe

- MATLAB: edge(image, `canny');
- >>help edge

Binary image analysis: basic steps

- Convert the image into binary form
 Thresholding
- Clean up the thresholded image
 Morphological operators
- Extract separate blobs - Connected components
- Describe the blobs with region properties

Thresholding Given a grayscale image or an intermediate matrix → threshold to create a binary output.

Example: edge detection

Looking for pixels where gradient is strong.

Erosion

- Erode connected components
- · Shrink features
- Remove bridges, branches, noise

Before erosion

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Element	1	1	1]						
Output Image	1	1								

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Element	t		1	↓ 1	1	Ι				
Output Image	1	1	0	0						

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	it			1	↓ 1	1]			
Output Image	1	1	0	1	1	1				

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	it					1	↓ 1	1]	
Output Image	1	1	0	1	1	1	1	1		

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
								Ţ		
Structuring Elemen	ıt						1	1	1	
	<u> </u>			1.				Τ.		
Output Image	1	1	0	1	1	1	1	1		

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Element	t							1	1	1
Output Image	1	1	0	1	1	1	1	1	1	1
Note that the object gets bigger and holes are filled.										

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Element	t			1	↓ 1	1				
Output Image	0	0	0	0	0					

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemer	nt				1	↓ 1	1]		
Output Image	0	0	0	0	0	1				

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemer	nt						1	1	1]
Output Image	0	0	0	0	0	1	0	0		

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemen	t							1	↓ 1	1
Output Image	0	0	0	0	0	1	0	0	0	

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
Structuring Elemer	nt								1	1
					1	1	1	1		
Output Image 0 0 0 0 1 0 0 1										
Note that the object gets smaller										

Issues

- What to do with "noisy" binary outputs?
 - Holes
 - Extra small fragments
- How to demarcate multiple regions of interest?
 - Count objects
 - Compute further features per object

- Various algorithms to compute – Recursive (in memory)
 - Two rows at a time (image not necessarily in memory)
 - Parallel propagation strategy

Recursive connected components

- Find an unlabeled pixel, assign it a new label
- Search to find its neighbors, and recursively repeat to find their neighbors til there are no more
- Repeat
- Demo http://www.cosc.canterbury.ac.nz/mukundan/covn/Label.html

Binary image analysis: basic steps (recap)

- Convert the image into binary form
 Thresholding
- · Clean up the thresholded image
 - Morphological operators
- Extract separate blobs
 Connected components
- Describe the blobs with region properties

Cons

Pros

- Hard to get "clean" silhouettes
- Noise common in realistic scenarios
- Can be too coarse of a representation
- Not 3d

Summary								
 Operations, tools 	Derivative filters Smoothing, morphology Thresholding Connected components Matched filters							
 Features, representations 	Histograms Edges, gradients Blobs/regions Local patterns Textures (next) Color distributions							

