

- · Measuring color
 - Spectral power distributions
 - Color mixing
 - Color matching experiments
 - Color spaces
 - · Uniform color spaces
- · Perception of color
 - Human photoreceptors
 - Environmental effects, adaptation
- · Using color in machine vision systems

- Important to reproduce color reliably

 Commercial products, digital imaging/art
- Only a few color names recognized widely

 English ~11: black, blue, brown, grey, green, orange, pink, purple, red, white, and yellow
- · We need to specify numerically.
- Question: What spectral radiances produce the same response from people under simple viewing conditions?

Color matching experiments

• **Goal**: find out what spectral radiances produce same response in human observers.

Color matching experiments Goal: find out what spectral radiances produce same response in human observers. Assumption: simple viewing conditions, where we say test light alone affects perception Ignoring additional factors for now like adaptation, complex surrounding scenes, etc.

Metamers

- If observer says a mixture is a match → receptor excitations of both stimuli must be equal.
- But lights forming a *perceptual* match still may be *physically* different
 - Match light: must be combination of primaries
 - Test light: any light
- Metamers: pairs of lights that match perceptually but not physically

Grassman's laws If two test lights can be matched with the same set of weights, then they match each other: Suppose A = u₁ P₁ + u₂ P₂ + u₃ P₃ and B = u₁ P₁ + u₂ P₂ + u₃ P₃. Then A = B. If we scale the test light, then the matches get scaled by the same amount: Suppose A = u₁ P₁ + u₂ P₂ + u₃ P₃. Then kA = (ku₁) P₁ + (ku₂) P₂ + (ku₃) P₃. If we mix two test lights, then mixing the matches will match the result (superposition): Suppose A = u₁ P₁ + u₂ P₂ + u₃ P₃.

- Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$ and $B = v_1 P_1 + v_2 P_2 + v_3 P_3$. Then $A+B = (u_1+v_1) P_1 + (u_2+v_2) P_2 + (u_3+v_3) P_3$.

Here "=" means "matches".

- Linear color space examples

 RGB
 - CIE XYZ
- Non-linear color space
 HSV

Today: Color

- · Measuring color
 - Spectral power distributions
 - Color mixing
 - Color matching experiments
 - Color spaces
 - Uniform color spaces
- Perception of color
- Human photoreceptors
- Environmental effects, adaptation
- · Using color in machine vision systems

Color and light

- Color of light arriving at camera depends on
- Spectral reflectance of the surface light is leaving
- Spectral radiance of light falling on that patch
- Color perceived depends on
 - Physics of light
 - Visual system receptors
 - Brain processing, environment

Trichromacy

- · Experimental facts:
 - Three primaries will work for most people if we allow subtractive matching; "trichromatic" nature of the human visual system
 - Most people make the same matches for a given set of primaries (i.e., select the same mixtures)

Environmental effects & adaptation

- Chromatic adaptation:
 - We adapt to a particular illuminant
- Assimilation, contrast effects, chromatic induction:
 - Nearby colors affect what is perceived; receptor excitations interact across image and time
- Afterimages

Color matching != color appearance Physics of light != perception of light

Chromatic adaptation

• If the visual system is exposed to a certain illuminant for a while, color system starts to adapt / skew.

