Lecture 15: Bayes Nets Independence
3/18/2014
Kristen Grauman
UT Austin

Slides courtesy of Dan Klein, UC Berkeley
Probability recap

- **Conditional probability**
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- **Product rule**
 \[P(x, y) = P(x|y)P(y) \]

- **Chain rule**
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i} P(x_i|x_1 \ldots x_{i-1}) \]

- **X, Y independent if and only if:**
 \[\forall x, y : P(x, y) = P(x)P(y) \]

- **X and Y are conditionally independent given Z if and only if:**
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
 \[X \perp Y | Z \]
Bayes’ Nets

- A Bayes’ net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>−b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>−e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|----|-----|------|
| +a | +j | 0.9 |
| +a | −j | 0.1 |
| −a | +j | 0.05 |
| −a | −j | 0.95 |

| A | M | P(M|A) |
|----|-----|------|
| +a | +m | 0.7 |
| +a | −m | 0.3 |
| −a | +m | 0.01 |
| −a | −m | 0.99 |

| B | E | A | P(A|B, E) |
|----|-----|-----|----------|
| +b | +e | +a | 0.95 |
| +b | +e | −a | 0.05 |
| +b | −e | +a | 0.94 |
| +b | −e | −a | 0.06 |
| −b | +e | +a | 0.29 |
| −b | +e | −a | 0.71 |
| −b | −e | +a | 0.001 |
| −b | −e | −a | 0.999 |
Bayes’ Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
Recall: Probabilities in BNs

- Why are we guaranteed that setting
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]
 results in a proper distribution?

- Chain rule (valid for all distributions):
 \[P(x_1, x_2, \ldots x_n) = \prod_i P(x_i | x_1 \ldots x_{i-1}) \]

- Due to **assumed** conditional independences:
 \[P(x_i | x_1 \ldots x_{i-1}) = P(x_i | \text{parents}(X_i)) \]

- Consequence:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]
P(+b, -e, +a, -j, +m) =
P(+b) P(-e) P(+a | +b, -e) P(-j | +a) P(+m | +a) =
0.001 x 0.998 x 0.94 x 0.1 x 0.7
Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?
 \(2^N\)

- How big is an N-node net if nodes have up to k parents?
 \(O(N \times 2^{k+1})\)

- Both give you the power to calculate \(P(X_1, X_2, \ldots X_n)\)
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)
Bayes’ Net

- Representation
 - Conditional independences
 - Probabilistic inference
 - Learning Bayes’ Nets from data
Conditional Independence

- X and Y are **independent** if

\[\forall x, y \quad P(x, y) = P(x)P(y) \quad \rightarrow \quad X \independent Y \]

- X and Y are **conditionally independent** given Z

\[\forall x, y, z \quad P(x, y|z) = P(x|z)P(y|z) \quad \rightarrow \quad X \independent Y|Z \]

- (Conditional) independence is a property of a distribution

- Example: \(\text{Alarm} \independent \text{Fire}|\text{Smoke} \)
Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

\[P(x_i | x_1 \cdots x_{i-1}) = P(x_i | \text{parents}(X_i)) \]

- Beyond the above ("chain-rule \rightarrow \text{Bayes net}") conditional independence assumptions
 - Often have many more conditional independences
 - They can be read off the graph

- Important for modeling: understand assumptions made when choosing a Bayes net graph
Example

- Conditional independence assumptions directly from simplifications in chain rule:

- Additional implied conditional independence assumptions?
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

 ![Diagram](image)

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
D-separation: Outline

- D-Separation: a condition/alGORITHM for answering such queries

- Study independence properties for triples

- Analyze complex cases in terms of member triples – reduce big question to one of the base cases.
Causal Chains (1 of 3 structures)

- This configuration is a “causal chain”

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

- Is X independent of Z given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y) \]

Yes!

- Evidence along the chain “blocks” the influence

X: Low pressure
Y: Rain
Z: Traffic

X: Low pressure
Y: Rain
Z: Traffic
Another basic configuration: two effects of the same cause

- Are X and Z independent?

- Are X and Z independent given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} = P(z|y)
\]

Yes!

- Observing the cause blocks influence between effects.

Y: Project due
X: Piazza busy
Z: Lab full
Common Effect (3 of 3 structures)

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

| X: Raining
| Z: Ballgame
| Y: Traffic |
The General Case

- **General question**: in a given BN, are two variables independent (given evidence)?

- **Solution**: analyze the graph

- Any complex example can be analyzed using these three canonical cases
Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph

- Attempt 1: if two nodes are connected by an undirected path blocked by a shaded node, they are conditionally independent

- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless “active”
Question: Are X and Y conditionally independent given evidence vars \{Z\}?
- Yes, if X and Y “separated” by Z
- Consider all undirected paths from X to Y
- No active paths = independence!

A path is active if each triple is active:
- **Causal chain** A \(\rightarrow\) B \(\rightarrow\) C where B is unobserved (either direction)
- **Common cause** A \(\leftarrow\) B \(\rightarrow\) C where B is unobserved
- **Common effect** (aka v-structure)
 A \(\rightarrow\) B \(\leftarrow\) C where B or one of its descendents is observed

All it takes to block a path is a single inactive segment
Recipe: shade evidence nodes, look for paths in the resulting graph
D-Separation

- Given query \(X_i \perp \!
\perp X_j \,|\, \{X_{k_1}, \ldots, X_{k_n}\} \)

- For all (undirected!) paths between \(X_i \) and \(X_j \)
 - Check whether path is active
 - If active return \(X_i \perp \!
\perp X_j \,|\, \{X_{k_1}, \ldots, X_{k_n}\} \)
 - Otherwise (i.e., if all paths are inactive) then independence is guaranteed.
 - Return \(X_i \perp \!
\perp X_j \,|\, \{X_{k_1}, \ldots, X_{k_n}\} \)
Example 1

\[R \perp B \quad \text{Yes} \]

\[R \perp B | T \]

\[R \perp B | T' \]
Example 2

\[
\begin{align*}
L \perp T' | T & \quad \text{Yes} \\
L \perp B & \quad \text{Yes} \\
L \perp B | T & \\
L \perp B | T' & \\
L \perp B | T, R & \quad \text{Yes}
\end{align*}
\]
Example 3

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**

 \[T \perp D \]

 \[T \perp D | R \quad \text{Yes} \]

 \[T \perp D | R, S \]
Structure implications

- Given a Bayes net structure, can run d-separation to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp\!
\!
\!
\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \]

- This list determines the set of probability distributions that can be represented by this BN
Computing all independences
Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs.
- Full conditioning can encode any distribution.
Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes’ net’s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution
Bayes’ Net

- Representation
- Conditional independences
 - Probabilistic inference
 - Learning Bayes’ Nets from data