Logistics

- Questions about the syllabus?
- Textbook
- Assignment PS0
- Mailing list and Piazza
Color game
What is AI?

The science of making machines that:

Think like humans
Thinking Like Humans?

- The cognitive science approach:
 - 1960s "cognitive revolution": information-processing psychology replaced prevailing orthodoxy of behaviorism

- Scientific theories of internal activities of the brain
 - What level of abstraction? “Knowledge" or “circuits"?
 - **Cognitive science**: Predicting and testing behavior of human subjects (top-down)
 - **Cognitive neuroscience**: Direct identification from neurological data (bottom-up)
 - Both approaches now distinct from AI
 - Both share with AI the following characteristic:

 The available theories do not explain (or engender) anything resembling human-level general intelligence
What is AI?

The science of making machines that:

<table>
<thead>
<tr>
<th>Think like humans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act like humans</td>
</tr>
</tbody>
</table>
Acting Like Humans?

- Turing (1950) “Computing machinery and intelligence”
 - “Can machines think?” → “Can machines behave intelligently?”
 - Operational test for intelligent behavior: the *Imitation Game*

- Predicted by 2000, a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning

- Problem: Turing test is not reproducible or amenable to mathematical analysis
What is AI?

The science of making machines that:

<table>
<thead>
<tr>
<th>Think like humans</th>
<th>Think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act like humans</td>
<td></td>
</tr>
</tbody>
</table>
Thinking Rationally?

- The “Laws of Thought” approach
 - What does it mean to “think rationally”?
 - Normative / prescriptive rather than descriptive

- Logicist tradition:
 - Logic: notation and rules of derivation for thoughts
 - Aristotle: what are correct arguments/thought processes?
 - Direct line through mathematics, philosophy, to modern AI

- Problems:
 - Not all intelligent behavior is mediated by logical deliberation
 - What is the purpose of thinking? What thoughts should I (bother to) have?
 - Logical systems tend to do the wrong thing in the presence of uncertainty
What is AI?

The science of making machines that:

<table>
<thead>
<tr>
<th>Think like humans</th>
<th>Think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act like humans</td>
<td>Act rationally</td>
</tr>
</tbody>
</table>
Acting Rationally

- **Rational behavior: doing the “right thing”**
 - The right thing: that which is expected to maximize goal achievement, given the available information
 - Doesn't necessarily involve thinking, e.g., blinking
 - Thinking can be in the service of rational action
 - Entirely dependent on goals!
 - Irrational ≠ insane, irrationality is sub-optimal action
 - Rational ≠ successful

- **Our focus here: rational agents**
 - Systems which make the best possible decisions given goals, evidence, and constraints
 - In the real world, usually lots of uncertainty
 - ... and lots of complexity
 - Usually, we’re just approximating rationality

- “Computational rationality”
Acting Rationally

Maximize your expected utility.
What about the brain?

- Brains (human minds) are very good at making rational decisions (but not perfect)
- Brains aren’t as modular as software
- “Brains are to intelligence as wings are to flight”
- Lessons learned: prediction and simulation are key to decision making
An **agent** is an entity that *perceives* and *acts*.

A **rational agent** selects actions that maximize its **utility function**.

Characteristics of the **percepts**, **environment**, and **action space** dictate techniques for selecting rational actions.

This course is about:
- General AI techniques for a variety of problem types
- Learning to recognize when and how a new problem can be solved with an existing technique
Color game

- You, as a class, acted as a learning agent
- Actions:
- Observations:
- Goal:
Properties of task environment

- Fully observable vs. partially observable
- Single-agent vs. multi-agent
- Deterministic vs. non-deterministic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Known vs. unknown
Example intelligent agents
Pacman as an Agent

Agent:
- Sensors
- Actuators

Environment:
- Percepts
- Actions

SCORE: 18
Reflex Agents

- Reflex agents:
 - Choose action based on current percept (and maybe memory)
 - May have memory or a model of the world’s current state
 - Do not consider the future consequences of their actions
 - Consider how the world IS

- Can a reflex agent be rational?

[demo: reflex optimal / loop]
Planning Agents

- Plan ahead
- Ask “what if”
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Consider how the world WOULD BE
Reminders

- PS0 Python Tutorial is due Thurs 1/23
- See course website for next week’s reading
- Next email response due Mon 8 pm