Lecture 25:
Neural networks
Applications, part 1
4/24/2014

Kristen Grauman
UT Austin
Today

- Neural networks
- Supervised learning in visual recognition
What does recognition involve?
Verification: is that a lamp?
Detection: are there people?
Identification: is that Potala Palace?
Object categorization

- mountain
- building
- tree
- banner
- street lamp
- vendor
- people
Scene and context categorization

• outdoor
• city
• …
Why recognition?

– Recognition a fundamental part of perception
 • e.g., robots, autonomous agents

– Organize and give access to visual content
 • Connect to information
 • Detect trends and themes
Posing visual queries

Yeh et al., MIT

Belhumeur et al.

Kooaba, Bay & Quack et al.
Autonomous agents able to detect objects

Slide credit: Kristen Grauman

Finding visually similar objects
Discovering visual patterns

Objects
Sivic & Zisserman

- **obj 1**
 143 kframes
 24 shots

- **obj 2**
 28 kframes
 67 shots

- **obj 3**
 42 kframes
 25 shots

- **obj 4**
 38 kframes
 25 shots

- **obj 5**
 64 kframes
 22 shots

Categories
Lee & Grauman

Actions
Wang et al.

Slide credit: Kristen Grauman
Auto-annotation

Results of automatic object-level annotation with bounding boxes. Groundtruth annotation is shown with dashed lines, false detections with solid red lines. Auto-annotation with related Wikipedia articles is also labeled with their GPS position and estimated tags (not shown here).

Gammeter et al.

T. Berg et al.

Slide credit: Kristen Grauman
Object Categorization

• Task Description
 “Given a small number of training images of a category, recognize a-priori unknown instances of that category and assign the correct category label.”

• Which categories are feasible visually?

“Fido” German shepherd dog animal living being
Visual Object Categories

- Basic Level Categories in human categorization [Rosch 76, Lakoff 87]
 - The highest level at which category members have similar perceived shape
 - The highest level at which a single mental image reflects the entire category
 - The level at which human subjects are usually fastest at identifying category members
 - The first level named and understood by children
 - The highest level at which a person uses similar motor actions for interaction with category members
Visual Object Categories

- Basic-level categories in humans seem to be defined predominantly visually.
- There is evidence that humans (usually) start with basic-level categorization before doing identification.
 - Basic-level categorization is easier and faster for humans than object identification!
 - How does this transfer to automatic classification algorithms?
Challenges: robustness

- Illumination
- Object pose
- Clutter
- Occlusions
- Intra-class appearance
- Viewpoint

Slide credit: Kristen Grauman
What kinds of things work best today?

- Reading license plates, zip codes, checks
- Recognizing flat, textured objects (like books, CD covers, posters)
- Frontal face detection
- Fingerprint recognition
Inputs in 1963...

... and inputs today

Personal photo albums

Movies, news, sports

Surveillance and security

Medical and scientific images

Google™ Picasa™

flickr™ webshots™

picsearch™ YouTube™

Slide credit; L. Lazebnik
Generic category recognition: basic framework

- Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier
- Generate candidates in new image
- Score the candidates

Not all recognition tasks are suited to features + supervised classification...but what makes a class a good candidate?
Boosting intuition

Weak Classifier 1

Slide credit: Paul Viola
Boosting illustration

Weights
Increased
Boosting illustration

Weak Classifier 2
Boosting illustration

Weights Increased
Boosting illustration

Weak Classifier 3
Final classifier is a combination of weak classifiers
Boosting: training

• Initially, weight each training example equally

• In each boosting round:
 – Find the weak learner that achieves the lowest weighted training error $\sum_i w_i |h_j(x_i) - y_i|$
 – Raise weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
Viola-Jones face detector

Main idea:

– Represent local texture with efficiently computable “rectangular” features within window of interest
– Select discriminative features to be weak classifiers
– Use boosted combination of them as final classifier
– Form a cascade of such classifiers, rejecting clear negatives quickly
Viola-Jones detector: features

“Rectangular” filters

Feature output is difference between adjacent regions
Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Which subset of these features should we use to determine if a window has a face?

Use boosting both to select the informative features and to form the classifier.
Viola-Jones detector: AdaBoost

- Want to select the single rectangle feature and threshold that best separates **positive** (faces) and **negative** (non-faces) training examples, in terms of **weighted** error.

Outputs of a possible rectangle feature on faces and non-faces.

Resulting weak classifier:

\[
\begin{align*}
\ h_t(x) &= \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases}
\end{align*}
\]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

Slide credit: Kristen Grauman
Viola-Jones Face Detector: Results

First two features selected
Cascading classifiers for detection

- Form a *cascade* with low false negative rates early on
- Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative

Slide credit: Kristen Grauman
Viola-Jones detector: summary

Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/]
Example using Viola-Jones detector

Frontal faces detected and then tracked, character names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A.
"Hello! My name is... Buffy" - Automatic naming of characters in TV video, BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html
Person detection with HoG’s & linear SVM’s

• Map each grid cell in the input window to a histogram counting the gradients per orientation.

• Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Code available: http://pascal.inrialpes.fr/soft/olt/
Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples
Person detection with HoG’s & linear SVM’s

- Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, International Conference on Computer Vision & Pattern Recognition - June 2005
Multi-class SVMs

• SVM is a binary classifier. What if we have multiple classes?

• **One vs. all**
 – Training: learn an SVM for each class vs. the rest
 – Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

• **One vs. one**
 – Training: learn an SVM for each pair of classes
 – Testing: each learned SVM “votes” for a class to assign to the test example
Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake

CVPR 2011
The Kinect pose estimation pipeline

capture depth image & remove bg

infer body parts per pixel

cluster pixels to hypothesize body joint positions

fit model & track skeleton

Slide credit: Jamie Shotton
Training decision trees

\[Q_n = \{(I, x)\} \text{ for all pixels} \]

Body part \(c \)

Goal: drive entropy at leaf nodes to zero

\[\Delta E = -\frac{|Q_l|}{|Q_n|} E(Q_l) - \frac{|Q_r|}{|Q_n|} E(Q_r) \]

Take \((\Delta, \theta)\) that maximises information gain:

Slide credit: Jamie Shotton
Decision forest classifier

- Trained on different random subset of images
 - “bagging” helps avoid over-fitting
- Average tree posteriors

\[P(c|I,x) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|I,x) \]
6+ million geotagged photos by 109,788 photographers

Annotated by Flickr users

Slide credit: James Hays

Slide credit: James Hays
The Importance of Data

Slide credit: James Hays
Summary

- Neural networks
- Boosting
- Decision forests
- Classifier cascades
- Binary classifiers → multi-class

- Visual recognition tasks with supervised classification
 - Variety of features and models
 - Training data quality and/or quantity essential